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Abstract

I study why clean technologies are adopted slowly and how this slow adoption undermines clean

innovation. Using an event study around large energy price swings, I provide evidence that industries

with short-lived assets see greater increases in energy efficiency and green patenting, consistent with

lock-in among users of long-lived assets. To assess policy implications for the green transition, I embed

the feedback between irreversible investment and energy saving innovation in an integrated assessment

model. Slow adoption delays the pass-through of clean innovation to energy demand relative to benchmark

models. The sluggish uptake of innovation justifies higher carbon taxes if the social cost of carbon rises

with cumulative emissions. These higher taxes reduce investment, thereby reducing R&D incentives and

further limiting the power of green innovation in facilitating emission reductions in the short to medium

run. Replacement subsidies can partly substitute for carbon taxes. Uniform subsidies improve fuel

efficiency but raise emissions via scale effects. Redirecting these subsidies toward electrification is a more

effective second-best when the electricity mix is sufficiently clean.
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1 Introduction

Reducing CO2 emissions to limit damages from global warming is an important policy priority. Given

that nearly 90% of global CO2 emissions stem from fossil fuel combustion, abatement must come either

from retrofitting the existing capital stock or from replacement with more efficient vintages. Empirical

evidence suggests the second channel is more important: over short horizons, capital and energy are close

to perfect complements (Hassler, Krusell, and Olovsson, 2021), implying existing combustion processes

are not easily modifiable. By contrast, the role of technology adoption through capital replacement is well

documented. Entrants with new capital are approximately 30% more energy-efficient than incumbents

across the U.S. manufacturing and power sector (Clay, Jha, Lewis, and Severnini, 2021; Linn, 2008).

The importance of capital replacement for reducing emissions is in tension with current goals of a rapid

transition. Infrequent replacement, driven by the high durability of fossil fuel consuming capital, creates

significant path dependence in fuel use, despite ongoing breakthroughs in clean technology. Low adoption

across many industrial processes also weakens incentives to develop these technologies, reinforcing the

shortage of low-emission alternatives (IEA, 2020). With 1.5-degree warming already out of reach, this

lack of adoption and innovation presents a roadblock to meet warming thresholds set in the 2015 Paris

Agreement.

In this paper, I combine new reduced-form evidence with a structural model to quantify how the

feedback between adoption and innovation matters for the dynamics of fossil fuel use and resulting climate

damages. To illustrate the role of durability, I compare industries with highly durable and less durable

capital during periods of persistently elevated energy prices. Industries with high durability exhibit weaker

shifts toward clean innovation and smaller improvements in energy intensity in response to energy price

shocks. Motivated by this evidence, I develop a multisector integrated assessment model (IAM) with

vintage capital and endogenous energy-saving technical change. Existing climate-economy models assume

either that energy use can be freely adjusted after capital is installed or new technologies are adopted

immediately (Acemoglu, Aghion, Bursztyn, and Hemous, 2012; Golosov, Hassler, Krusell, and Tsyvinski,

2014). The analysis yields two main findings. First, optimal carbon taxes reduce short- to medium-run

emissions significantly less than in standard models. Emissions decline slowly because new technologies

are only gradually adopted and carbon tax induced investment declines limit R&D incentives. The lower

elasticity of emissions with respect to carbon taxes also implies higher optimal taxes when damages rise

with cumulative emissions. Achieving a 45 percent cut within 25 years, as in the Paris goals, would

require a tax about four times higher than the benchmark in Golosov et al. (2014). If marginal damages

rise linearly, the optimal tax is about 10 to 15 percent higher. Second, replacement subsidies that boost

demand for new machines improve equilibrium energy efficiency via market size effects. However, scale

effects dominate, so these policies raise overall emissions. If firms can electrify, replacement subsidies to

switch from fuel to electricity powered machines can be a more effective second-best policy, provided the

electricity mix is sufficiently clean.
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Figure 1: Capital versus Energy Intensity Across Manufacturing Industries
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The figure plots the ratio of equipment capital to value added against the ratio of energy use to value added across
manufacturing industries in the US. Data are from the NBER CES Manufacturing database.

To motivate the analysis, I first empirically study how capital adjustment shapes the dynamics of

energy efficiency. Figure 1 shows a tight link between capital and energy intensity across U.S. manufac-

turing industries.1 I test whether this relationship also matters for how quickly industries adopt more

energy-efficient vintages. Because industries with low depreciation replace capital less frequently, they

may experience smaller improvements in energy efficiency after energy price increases. I exploit two long

upswings in aggregate energy prices, starting in 1973 and post-2000, each preceded by periods of relative

price stability. I use an event-study design around these increases to test for differential responses as a

function of industry depreciation rates. In line with the sluggish demand hypothesis, high-depreciation

industries experience larger gains in energy efficiency and green patenting. The innovation effects are

consistent with greater replacement positively affecting R&D incentives. Quantitatively, industries at the

75th percentile of the depreciation rate distribution experience a 14% decline in energy intensity and a

31% increase in the share of green patents, relative to the 25th percentile.

To interpret the implications of these estimates for the dynamics of the green transition, I develop a

theoretical model of adoption and innovation in which demand for new vintages arises from firms replacing

old capital with new. The model quantifies (i) long- and short-run elasticities of energy demand, (ii) the

interaction between adoption and technological development, and (iii) transition paths under carbon taxes,

replacement subsidies, and industrial electrification. Long-run general-equilibrium adjustments are key

to addressing these questions because transitional dynamics extend well beyond the time horizon that

1Manufacturing accounts for 23% of all carbon emissions in the U.S. economy, even before accounting for indirect emissions
through the use of electricity generated by electric utilities (EPA, 2021). The majority of these emissions come from energy use.
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event study approaches can cover. Differential effects across industries mask aggregate adjustments, such

as declines in investment induced by carbon taxes, which in turn feed back into adoption and innovation.

Finally, the model establishes the quantitative importance of slow adoption relative to existing integrated

assessment models.

The key novelty of the model is the two-way relationship between replacement of old machines and

R&D in new vintages. On the demand side, users of capital goods operate machines with fixed energy

requirements, which they can scrap and replace with new machines. The energy efficiency of this new

machine depends on the R&D decision of machine producers supplying the capital. Because R&D to

improve energy efficiency entails a fixed overhead cost, the model features a market size effect: higher

replacement rates increase innovation incentives. Thus, the model is the first to combine vintage capital

with demand-driven, factor-augmenting technical change. Carbon taxes or higher energy prices raise the

demand for energy-efficient equipment among machine users. However, higher energy prices also reduce

the investment rate. This contraction occurs because, as energy prices rise, profitability per unit of capital

declines, making the fixed cost of investing in a new machine less attractive.

I embed this model of replacement-driven technological progress into a dynamic general equilibrium

model with climate–economy interactions, following Golosov et al. (2014). Final output is produced using

manufacturing, services, and electricity in a nested CES production function. Manufacturing employs

capital with higher and lower durability, mirroring the reduced-form analysis, and capital in electricity

generation is either fossil-fuel-consuming or clean. In both manufacturing and fossil-fuel-based electricity,

capital embodies energy efficiency, and replacement drives innovation incentives.2 I cast the model in

continuous time, which allows me to leverage tools from Achdou, Han, Lasry, Lions, and Moll (2022),

facilitating rapid computation.3 I handle transition dynamics using a collocation approach instead of the

commonly used finite-difference method in the time dimension (Hémous, Lepot, Sampson, and Schärer,

2023; Schesch, 2024). Together, these methods allows me to use the simulated method of moments to

match model to data.

The calibration combines parameter estimates from external sources with moment matching, targeting

sectoral data on investment, depreciation, energy use, and prices for the U.S. economy. The elasticity of

aggregate energy efficiency with respect to energy prices is governed by the dispersion of idiosyncratic

replacement cost shocks. I calibrate this elasticity to match the reduced-form evidence on differential

changes in energy efficiency across industries. The calibrated model matches the full time path of the

coefficients from the event study. Matching these empirical transition speeds provides credibility to the

central goal of my quantitative exercises: How much does slow uptake of new vintages matter for short-

and medium-run energy dynamics?

In the first set of counterfactuals, I study how the economy responds to a permanent 250% increase

2In clean energy, investment also works through replacement, but I abstract from innovation in that sector. Extensions to
exogenously falling investment prices or endogenous innovation would be straightforward.

3As firms are subject to idiosyncratic shocks to the value of replacement, the model formally belongs to the family of
heterogeneous-agent, continuous-time models analyzed by Achdou et al. (2022) with a continuous and time-varying distribution
of vintages in each sector.
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in energy prices.4 Such an increase is on the same order of magnitude as the mid-1970s run-up in energy

prices, as well as projections of what is required for the European Union to meet its decarbonization

goals (Hochmuth, Krusell, and Mitman, 2025). The simulations indicate a prolonged transition to an

equilibrium with higher energy efficiency. For example, in durable manufacturing the transition half-life

is 25 years for the average technology embodied in firms’ capital. These slow improvements in energy

efficiency are accompanied by an initial sharp decline in investment, as firms delay upgrading until the

technology has matured. To further establish the role of slow depreciation, I consider a counterfactual

economy with depreciation calibrated to match a half-life of 5 years for capital goods. While both

economies show similar long-run gains in energy efficiency and declines in energy use, cumulative energy

use is 8 percent higher over the first 25 years of the transition. This comparison provides a lower bound on

the importance of slow depreciation, as most models of endogenous technical change assume that capital

fully depreciates over five or ten years. I also investigate short- and long-run elasticities of substitution

between capital and energy. In the short run, energy requirements are fixed, so the factor share of energy

moves one-for-one with the energy price, as in models with Leontief aggregate production function. Over

time, energy efficiency improves, and electricity production substitutes toward clean energy, generating a

long-run elasticity of 0.3-0.4.5

Second, I evaluate the effectiveness of the globally optimal climate policy in curbing fossil fuel emis-

sions. To solve for the optimal policy, I build on insights from Nuño and Moll (2018) to derive a social

marginal value function that governs the social planner’s replacement decisions. I show that capital

replacement choices are efficient absent environmental externalities. I calibrate damage parameters to

generate carbon taxes on the order of $150 per ton of carbon, motivated by recent evidence of substantial

temperature induced GDP losses (Bilal and Känzig, 2024; Nath, Ramey, and Klenow, 2025). From a

global perspective, these taxes generate substantial welfare gains, especially in the long run, once cleaner

vintages are adopted. Relative to workhorse IAMs such as Golosov et al. (2014), these gains are smaller

because energy is much less substitutable in the main model than in the Cobb-Douglas economy con-

sidered in their paper. In contrast, the Cobb-Douglas case displays essentially no transitional dynamics,

with energy use shifting down immediately. These differences in the elasticity of emissions with respect

to carbon taxes raise the optimal carbon tax if the social cost of carbon is increasing in cumulative emis-

sions. For a sharply increasing social cost of carbon, or an equivalently strict carbon budget, the sluggish

response of energy demand justifies substantially higher taxes. To lower emissions by 45% within 25 years

requires nearly four times higher taxes in my model than in the Cobb-Douglas case. I also contrast with

a case of no substitutability between capital and energy. In that case, decarbonization occurs without

technological adjustment, as investment must fall significantly. Without technological adjustment, energy

use remains persistently higher than in my model.

4I treat the price of fossil fuels as exogenous to the U.S. economy.
5This long-run elasticity is lower than implied by the Cobb-Douglas assumption used in many macro-climate models. I

also consider an calibration with larger intertemporal R&D spillovers, which doubles the long-run elasticity. Despite the larger
long-run elasticity, simulations show that energy use dynamics over the first 25 years of the transition are very close to the
baseline case of smaller spillovers.
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Carbon taxes have proved politically infeasible in many countries, leading policymakers to adopt alter-

native policy tools to lower emissions. Examples include investment tax credits to stimulate investment

into more energy-efficient machines or clean energy subsidies. The framework developed in this paper

provides a natural laboratory to assess the effectiveness of such policies. In the model, unconditional

replacement subsidies can stimulate innovation, thereby potentially lowering emissions. Quantitatively,

these increases in productivity are outweighed by scale effects: more frequent replacement raises the

economy’s capital stock. The model-predicted scale effects match empirical estimates of the elasticity of

investment to the cost of capital (Chodorow-Reich, 2025). This scale effect outweighs the productivity

effect, so emissions increase on net.

More targeted subsidies can perform better. Such policies appear in the U.S. Inflation Reduction Act

and the Federal Climate Action bill Germany passed in 2024. I extend the model with a second margin

of adjustment: electrification. When replacing equipment, firms choose between a new fossil fuel machine

and an electrified machine. The benefit is that firms can avoid paying carbon taxes. I calibrate the cost

of an electrified machine to match a rate of electrification of 12%, consistent with the share of energy

use coming from electricity in U.S. manufacturing.6 Model simulations suggest that subsidies towards

electrification are a powerful second-best policy towards reducing fossil fuel use in manufacturing. A 5%

subsidy to manufacturing investment raises fossil fuel use by 1%, whereas redirecting the same subsidy

to electrification cuts it by 10%. For such policies to reduce overall emissions, the power sector must be

sufficiently decarbonized so additional demand is met with clean energy.

Related Literature. This paper contributes to several strands of the literature on environmental

macroeconomics and growth.7 First, I contribute to the literature using integrated assessment models

to study optimal climate policy (Barrage and Nordhaus, 2024; Golosov et al., 2014). The integrated

assessment framework in these papers builds on the neoclassical growth model with exogenous technology.

Acemoglu et al. (2012) extend these models by studying how policy should engineer a green transition when

innovation can be redirected towards non-polluting energy sources. While they show that endogenous

technical change can drive green growth, how quickly such innovations are adopted remains an open

question. My paper fills this gap by developing a model of demand-driven innovation and adoption

in which take-up of new technologies is constrained by slow depreciation. Hassler et al. (2021) and

Casey (2023) attribute higher long-run substitutability between energy and non-energy inputs to gradual

technological development, even as short-run energy demand may be inflexible. Relative to these papers,

my model incorporates feedback between adoption and innovation and captures the gradual response

of energy efficiency implied by imperfect depreciation across vintages. My model also accounts for the

fact that policies that affect aggregate investment, via carbon taxes or investment tax credits also have

indirect effects on R&D incentives, a channel absent from these papers. A second contribution is to study

pathways for industrial decarbonization. Over the last 40 years, improvements in energy efficiency were

6To validate this model of fuel switching I compare model responses to well-identified evidence on fuel switching in response
to carbon prices from Kaartinen and Prane (2024). The model replicates the empirical fuel-switching response well.

7Bilal and Stock (2025) and Hassler and Krusell (2018) survey this literature.
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the most significant contributor to the decline in the U.S. economy’s carbon intensity (Casey, 2023), but

green electricity opens the possibility of electrification as an alternative for reducing emissions. In an

extension, I introduce electrification as an alternative to fossil fuel saving technical change.

A smaller literature studies the role of capital replacement for growth and innovation, emphasizing

market size effects linked to the replacement rate (Bertolotti and Lanteri, 2024; Hsieh, 2001; Krusell, 1998).

However, these papers do not consider factor-specific technological change, which is crucial for studying

the green transition and directed technological change more broadly. I also show how differences in

depreciation rates across industries affect how quickly innovation improves measured productivity. These

differences are important even across manufacturing industries, where depreciation varies only from 5 to

10 percent. The adoption channel is likely even more significant when comparing manufacturing with

services, where differences in depreciation are larger.

An important idea of this paper is that technology is embodied in the capital stock, so benefiting

from technology requires investment. This idea is central to “putty-clay” models of capital accumulation.

Atkeson and Kehoe (1999) were the first to apply the putty-clay approach of Solow (1962) to the capi-

tal–energy nexus. Recent work asks whether sharp increases in carbon taxes or energy prices strand assets

by making inefficient vintages unprofitable to operate (Campiglio, Dietz, and Venmans, 2022; Gilchrist,

Martinez, and Rickard, 2024; Wei, 2003). My framework abstracts from the short-run costs of stranded

assets, and instead emphasizes the feedback between innovation and adoption along the transition. This

feedback matters quantitatively, as energy prices or carbon taxes encourage innovation, which allows the

economy to transition away from fossil fuels. My model of demand driven innovation also accounts for

innovation spillovers driven by market size effects. These spillovers are absent in putty-clay models where

producing firms choose their own capital energy mix when building a new machine. Market size effects

provide an important rationale for replacement subsidies, which I analyze in this paper.

On the empirical side, this paper connects to a rich literature emphasizing the importance of innovation

and capital adjustment costs in mediating the effects of energy price increases. Hawkins-Pierot andWagner

(2023) show that the energy efficiency of entering firms is significantly more sensitive to rising energy prices

than that of incumbent firms. Rates of establishment churn from Business Dynamics Statistics (BDS)

data are positively correlated with the sectoral depreciation rates I construct. Thus, higher depreciation

and more entry are related margins that make the capital stock more flexible and allow more short-

run substitution away from energy. Relatedly, Capelle, Kirti, Pierri, and Bauer (2023) link the vast

heterogeneity in energy intensity across firms in the same industry to the age of the capital stock. While

such age-driven, within-industry dispersion also arises in my model, I emphasize sectoral characteristics

shaping speed at which industries adjust. Finally, my estimates of the differential cross-industry effects

of energy prices on green innovation contribute to the literature on innovation responses to energy price

shocks and environmental regulation (Aghion, Dechezleprêtre, Hemous, Martin, and Van Reenen, 2016;

Dugoua and Gerarden, 2025; Popp, 2002). I add to this literature by showing that feedback from adoption

to innovation can undermine innovation incentives in low-depreciation sectors.
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Roadmap. This paper is structured as follows. Section 2 presents the empirical results on the

differential effects of energy prices across manufacturing industries differing in the capital depreciation

rate. Section 3 develops the general equilibrium model that links capital replacement decisions to energy

saving innovation. Section 4 describes the quantitative results on energy price increases, carbon taxes and

replacement subsidies. Section 5 concludes.

2 Empirics

The main aim of the empirical analysis is study the role of slow depreciation and durability as factors

mediating the pass-through of energy prices to energy efficiency. This section describes construction and

sources for the key inputs into this investigation as well as summary statistics. Then I present the results

for the main empirical exercise comparing energy efficiency and rates of green patenting across two major

episodes of energy price increases.

2.1 Data, Methodology and Descriptives

This section introduces the three main data sources for the empirical analysis are introduced in this

section. Additional data used for robustness checks is discussed at the end of the results section.

Manufacturing Data. Data on value added, energy expenditure and energy price indices comes

from the NBER CES Manufacturing database (Becker, Gray, and Marvakov, 2021). I deflate energy

expenditures and value added using industry-specific output deflators and industry-specific energy-price

indices. The data on equipment stock shown in Figure 1 uses the real value of the equipment capital stock

reported in this database.

Patent data. I start from the universe of USPTO granted patents available from Patstat. In

robustness checks, I estimate my regressions on the subset of biadic patents, i.e. patents that were

granted by one other patent office in addition to the USPTO. Aggregating this data to the industry level

requires a concordance since patent data is reported at the level of technology classes. Let pjk = 1 if

patent k lists CPC4 technology code j and let Nk be the total number of codes of patent k. A single

patent may have several technology codes associated with it. The patent count for industry i is then

constructed as

pi =
∑
j

∑
k

ωij
pjk
Nk

where ωij is concordance weight to aggregate patents from CPC4 to NAICS4 from Lybbert and Zolas

(2014). The number of green patents is constructed analogously from all USPTO granted patents that

list among their technology code the classification “Y02”. This classification has been used widely in

academic research (Calel and Dechezleprêtre, 2016; Känzig, 2023).

Depreciation data. I construct industry-level depreciation rates from equipment capital-stock and

investment data at the 4-digit NAICS level available from the Federal Reserve. With this data, I estimate

8



depreciation rates by inverting the following perpetual-inventory equation

Ki,t+1 = (1− δi,t)Ki,t + Ii,t. (1)

This is the same perpetual inventory equation that the Federal Reserve uses to construct industry-level

capital stocks (Gilbert and Mohr, 1996). δi,t is computed from equipment capital stocks and investment

expenditures. These depreciation rates obtained in this way naturally vary across years because of shifts

in the composition of investment across assets within industries, base-year effects (Whelan, 2002), as well

as the cyclical behavior of investment. To account for this uncertainty in measurement, I average the

depreciation rate across 1990-2020, a period during which depreciation rates were relatively constant in

the aggregate (Dalgaard and Olsen, 2025). I discuss these issues in more detail in Appendix A.1, and

show robustness of my results to using a measure of capital stock durability based on an average of service

lives of individual assets using asset by industry investment shares from the BEA capital flow table as

weights.

Empirical approach. My analysis aims to test whether pass through of energy price shocks to energy

intensity and the share of green patents depends on capital durability. The empirical strategy leverages

two sources of energy price variation. First, I evaluate the differential response of industries to aggregate

swings in the price of energy using an event study framework. Second, I use an IV approach that relies on

industries’ differential exposure to fuel price shocks to generate plausibly exogenous variation in energy

prices across industries.

Event-Study Approach. Figure 2 plots the evolution of the average price of energy paid by U.S.

manufacturing industries.8 The time series exhibits two distinct upswings. The top panel shows that

the real price of energy rises 2.5-fold within 15 years after the 1973 oil-price shock. The first oil price

shock does not fully explain the persistent increase. Historical accounts of U.S. energy prices emphasize

additional domestic and global shocks to energy markets during this time period (Holdren, 1990; Lifset,

2014). An important question is whether industries anticipated such a persistent response to the initial

shocks. Kilian and Murphy (2014) argue that inventory behavior indicates producers expected prolonged

periods of higher prices after the initial shock. The Panel on the right shows a smaller but significant

run-up in energy prices from 2000 to 2005, again led by a dramatic post-2000 increase in oil prices. I use

these two episodes of rapid, persistent increases to evaluate how industries respond to such shocks.9

Concretely, I estimate the differential response to the shock following the local-projections approach

to difference-in-differences estimation suggested in Dube, Girardi, Jorda, and Taylor (2023)

log(yit)− log(yi−1) = αt + βtδi + γt
′xi + ϵit for t ∈ {−5, . . . , 15} (2)

8This data is provided by the State Energy Data System (SEDS) as collected by U.S. Energy Information Administration
(EIA).

9While oil is not a major fuel in manufacturing, U.S. fossil fuel prices co-move strongly (Serletis and Herbert, 1999), which
explains the large energy-price increase following the oil shock in Figure 2.
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Figure 2
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Note: Both plots show the annual manufacturing energy price calculated as a fuel share weighted average across energy
sources from the U.S. Energy Information Administration, deflated by the CPI. Underlying fuel prices are averages
for the industrial sector.

This regression compares how energy intensity and the share of green patents evolve around the shock,

relative to the pre-shock year t = −1. Coefficients βt t < 0 reveal whether industries trended differentially

prior to the increase in energy prices. Because depreciation may correlate with industry characteristics,

I control for capital and energy intensity, the 1990–2010 industry-level increase in imports from China,

and fuel shares to capture secular fuel-switching trends. Standard errors are clustered at the four-digit

NAICS level.

Descriptive Patterns. Table 1 provides summary statistics for the key variables. Panels A and B

show these variables for the 5 lowest and highest depreciation rate industries in the sample. These panels

illustrate the type of comparisons the empirical analysis relies on. Industries such as steel or industrial

machinery feature low depreciation rates around 5 percent, while capital stocks in the apparel industry

feature much higher depreciation rates. The variation in depreciation rates closely tracks differences in

mean service lives. Capital in low depreciation industries has on average much longer service lives, with a

correlation of -0.82 shown in Panel C. By contrast, depreciation is only weakly related to capital intensity,

the energy cost share, or the share of green patents. These low correlations indicate that durability and

energy intensity are distinct at the industry level. Capital stocks for the higher depreciation industries

in Panel B still require significant energy expenditures to operate. Among low-depreciation industries

(e.g., alumina, steel, machinery manufacturing), energy use varies widely. Likewise, high-depreciation

industries (e.g., apparel) differ substantially in energy intensity.

Overall, variation in depreciation rates is sufficiently distinct from plausibly related characteristics
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Table 1: Comparison of High and Low Depreciation Industries

Industry Depreciation Cap. intensity Energy cost share Green share Durability

Panel A: Lowest depreciation (Top 5 by rank)
Steel Product from Purchased Steel 0.05 1.43 0.08 0.06 27.16
Machine Shops; Turned Product; and Screw, Nut, and Bolt 0.05 0.93 0.03 0.02 24.26
Industrial Machinery 0.05 0.86 0.02 0.01 25.21
Coating, Engraving, Heat Treating, and Allied Activities 0.05 0.97 0.07 0.13 24.26
Nonferrous Metal (except Aluminum) Production and Processing 0.06 1.74 0.09 0.08 25.69

Panel B: Highest depreciation (Bottom 5 by rank)
Veneer, Plywood, and Engineered Wood Product 0.10 0.99 0.09 0.12 15.33
Fiber, Yarn, and Thread Mills 0.10 1.83 0.12 0.02 19.69
Sawmills and Wood Preservation 0.10 0.99 0.07 0.04 15.33
Cut and Sew Apparel 0.10 0.73 0.02 0.01 18.57
Footwear 0.11 0.81 0.02 0.00 18.65

Panel C: Correlations
Depreciation 1.00
Cap. intensity -0.10 1.00
Energy cost share -0.07 0.55∗∗∗ 1.00
Green share -0.20∗ 0.16 0.17 1.00
Durability -0.82∗∗∗ 0.35∗∗∗ 0.15 0.12 1.00

This table presents summaary statistics on measures of depreciation, capital intensity, energy intensity, share of green patents
and durability across four-digit manufacturing industries. All figures present averages using post 1990 data. Industry-level
depreciation is constructed from inverting the perpetual inventory equation based on industry-level capital stocks and investment
flows. Cap. intensity refers to the ratio of equipment capital to value added. Energy cost share is calculated as the ratio of
energy costs to value added. Green share is the ratio of green to total parents. Durability is the weighted average service life of
assets using asset-industry specific investment as weights. Panels A and B contrast low and high depreciation industries. Panel
C shows the correlations between these variables across all 81 manufacturing industries in the sample. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.

identified ex ante, motivating an empirical comparison of high- versus low-depreciation industries. To

ensure robustness to differential pass-through by energy or capital intensity, all regressions control for

baseline characteristics; I also report estimates without controls.

2.2 Results

Figure 3 shows the results from estimating equation (2) on data pre and post energy price increase. The

left-hand panel (Figure 3a) shows that after the 1973 oil-price shock, energy intensity declines more in

high-depreciation industries. The effects are economically sizable: an industry at the 75th percentile of

depreciation sees a 14% decline in energy intensity relative to the 25th percentile. The dynamics post

energy price shock differ from those observed in the pre-period. In times of stable energy prices, high and

low depreciation rate industries evolve similarly in terms of energy intensity.

Next, I apply the same approach to the log share of green patents. Since data on USPTO granted

patents is available only after 1976, I can only evaluate the effect on the post 2000s run up in energy

prices. Figure 4 presents the results. Prior to the energy price shock, there is no differential trend in green

patenting. Starting around 2003, however, when energy prices started to increase green patenting rates

increase significantly in high versus low depreciation industries. Multiplied by the interquartile range of

the depreciation rate distribution, these effects amount to a 34 percent relative increase the share of green

patents.

An important question is whether these increases in the share of green patents reflect increases in
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Figure 3: Effect on energy intensity
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(a) First energy price shock
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(b) Second energy price shock

Note: This Figure plots coefficients{βt}15t=−5 around the two increases in the real price of energy paid by industrial users. The
exposure variable to the increase in energy prices is the industry-level depreciation rate. The dependent variable is the (log)
ratio of real energy use divided by real value added. Panel (a) shows effects around the first energy price increase starting in
1973. Panel (b) repeats shows effects for the second energy price shock starting in 2000. Standard errors are clustered at the
four-digit NAICS level.

green patents versus differential declines in overall patents. Results for the (log) level of green and overall

patents are presented in Figure A2. Estimates indicate a long-run increase in the level of green patents,

with a transitory decline in overall patenting rates.

IV estimates. One shortcoming of the event-study approach is that major increases in the aggregate

price of energy were accompanied by broader macroeconomic downturns. Notably, the response of energy

intensity and green patenting does not arise at business cycle frequency. However, short-run event study

estimates could conflate the reaction to broader macroeconomic events with the reaction to energy prices.

To move beyond aggregate increases in energy prices, I rely on industry-level energy price indices to test

for differential pass through. The regression model is

log yit = αi + αt + ρ log yit−1 + β0 log p
e
it−1 + β1 log p

e
it−1 × δi + ϵit.

In this specification, αi and αt are unit and time fixed effects. The coefficient of interest is β1. I include

one lag of the dependent variable to allow the effect of energy prices to accumulate over time.10 Standard

errors are clustered at the four-digit NAICS level. To address endogeneity concerns about industry-level

energy prices, I apply an instrumental variables approach. These prices differ because industries differ in

the types of fuels they consume (gas, coal, oil, electricity). I construct a fixed-weight energy price index:

p̃ei,t =
∑
f

γif,1990pf,t

where γif,1990 is the share of total energy consumption industry i derived from fuel f ∈ {Coal,Gas,Oil, Electricity}

in 1990. pf,t is price observed for those fuels over the period 1990-2018. The data on fuel shares is taken

10Results are in not sensitive to the inclusion of lagged dependent variables.
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Figure 4: Effect on (log) share of green patents. Second energy price shock: t = 0 in 2000
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Note: This Figure plots coefficients {βt}15t=−5around the two increases in the real price of energy paid by industrial users. The
exposure variable to the increase in energy prices is the industry-level depreciation rate. The dependent variable is the (log)
ratio of green to total patents. Patent data is only available from 1976, so results are only presented for the second energy price
increase.

from the Manufacturing Energy Cost Survey (MECS). The benefit of this IV approach relative to OLS

is it avoids reverse causality from reduced energy demand to lower energy prices as well as fuel switching

effects. The first stage regression of this IV approach has a Kleibergen-Paap F-Statistic of 35.6 (cf. Table

??).11 In addition to a strong first stage, this research design relies on exogeneity of the fuel shares with

respect to unobserved shocks to energy intensity and the share of green patents (Goldsmith-Pinkham,

Sorkin, and Swift, 2020). In support of this assumption, Figures A3 and A4 show that none of the fuel

shares predict changes in the outcomes of interest prior to 1990.

Given these validity checks, Table 2 presents the second stage results. Columns (1)-(3) present results

for (log) energy intensity. Column (1) shows that on average energy prices have only a small effect on

energy intensity. Column (2) confirms industries with higher depreciation rates see larger reductions in

response to increases in energy prices. Column (3) adds control variables by interacting the price of energy

with aforementioned industry characteristics. Results remain robust to adding these control variables. The

results for the share of green patents paint a similar picture. Column (4) shows a statistically insignificant,

positive effect of energy prices on the share of green patents. However the effect on innovation is again

larger for high depreciation industries as can been seen in columns (5)-(6). I obtain broadly similar results

using OLS instead of the IV approach. Table A2 reports these results.

Robustness Checks. The results are robust along a number of dimensions:

1. Heterogeneity in short-run substitution elasticity: Estimates in Figure 3 suggest high depreciation

industries display a higher elasticity of substitution between energy and non-energy inputs. One

potential threat to interpreting these effects as driven by depreciation is they may also exhibit a

higher short-run elasticity. To investigate this possibility, I run regressions of (log) energy cost share

11I have verified that my results also hold in the reduced form, i.e. if I directly plug in p̃eit in place of peit.
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Table 2: IV estimates: Second stage results

E/VA Share Green Patents

(1) (2) (3) (4) (5) (6)

log(p) -0.0260 -0.0122 -0.0894 0.346 0.318 -0.0582
(-0.20) (-0.09) (-0.92) (1.41) (1.35) (-0.24)

Lagged Outcome 0.859∗∗∗ 0.855∗∗∗ 0.862∗∗∗ 0.586∗∗∗ 0.570∗∗∗ 0.538∗∗∗

(31.60) (30.14) (33.43) (6.45) (6.26) (5.52)

log(p) x delta -2.318∗∗ -2.450∗∗∗ 10.15∗∗∗ 8.585∗∗

(-2.21) (-2.70) (2.79) (2.33)

Industry F.E. yes yes yes yes yes yes
Year F.E. yes yes yes yes yes yes
Controls no no yes no no yes
Clusters 81 81 81 81 81 81
Kleibergen-Paap F-Stat 34.1 18.6 31.6 36.6 19.1 33.8
Observations 2187 2187 2106 2187 2187 2106

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows IV estimates of the differential effects of industry-level energy prices on the (log) ratio of real energy
use divided by real value added (Columns (1)-(3)) and the (log) share of green patents (Columns (4)-(6)). Columns (4) and
(6) additionally control for the instrumented interaction of baseline energy intensity and capital intensity with industry-level
energy prices. First stages estimates are presented in Table A1. Standard errors are clustered at the four-digit NAICS level.

in value added on (log) energy prices

log(energy share)t = α+ β log pe,t + ϵt.

I estimate this equation separately for each industry, resulting in a vector of short-run pass through

rates. The resulting coefficients have a mean of 1.05 across industries, consistent with evidence

of perfect complements in Hassler et al. (2021). Figure A1 shows that short-run pass-through

displays no significant correlation with depreciation. These results strengthen the interpretation of

depreciation as a source of long-run, but not short-run, substitution, as would be implied by faster

adoption of more energy-efficient capital.

2. Discrete treatment variable: An alternative way of estimating the differential effect of energy prices

is to define a dummy variable equal to one if industry i is in the top quartile of the empirical

distribution of depreciation rates. Figures A5, A6 and A7 show the results. For the second energy

price shock, effects are highly consistent across the two approaches. For the first energy price shock

and outcome (log) energy intensity, estimates are qualitatively similar but not statistically significant

when using the discrete measure. The depreciation rates are close to uniformly distributed across

manufacturing industries such that there is no natural cut-off. Therefore, results based on the

continuous measure are arguably preferable.

3. Biadic patents: Patents differ widely in quality, so I repeat the estimation shown in Table A2
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including only biadic patents. I define a patent as biadic if it has been granted by USPTO and

one other patent agency. Columns (4)-(6) in Table A3 show the results. This delivers very similar

results to the OLS estimates of Table A2.

4. Alternative durability measure: To assess the robustness of my results to alternative measures of

durability, I construct a measure of average asset life of equipment capital for each industry Ti. This

measure is based on BLS estimates of asset lives for disaggregated asset classes and industry by asset

class level investment from the 1997 BEA capital flow table. This variable is not always available

at the four digit level since BEA industries are often more aggregated than four digit NAICS. The

resulting durability measure has a negative correlation with depreciation of -0.82 as shown in Table

1. Table A4 shows the results. While results are slightly noisier, they remain statistically significant.

5. The effects in Figures A6 represent differential effects across industries and do not capture potentially

important general equilibrium adjustments. These cannot be credibly identified with the empirical

approach taken so far, as time fixed effects are contaminated by simultaneously occurring macroeco-

nomic events. Identified macroeconomic shocks provide an alternative source of variation allowing

for identification of general equilibrium responses. The shocks I draw on are oil supply shocks

provided by Baumeister and Hamilton (2019). I use these shocks in a local projection framework

similar to Känzig (2021). Further details on the estimation approach are provided in Appendix A.1.

Figure A8 shows that these oil price shocks lead to a persistent increase in the real price of energy

paid by industrial consumers, where the energy price series is the same series as in Figure 2. Figure

A9 shows results of the shock on innovation and energy intensity across high and low depreciation

industries. Effects on innovation are consistent with the cross-industry analysis. High depreciation

sector see a roughly 10 percent increase in the share of green patents, with a smaller response for low

depreciation industries. This difference is statistically significant at the 90% confidence level at the

1 year horizon. To interpret the magnitude note that the shock is scaled to increase energy prices

by 10 percent on impact. For energy intensity, the response is zero for high depreciation industries

and even positive at some horizons for low depreciating industries. The pattern for low depreciation

industries stems from value added declining faster than energy demand. However the difference

is not statistically significant. Broadly, these results are in line with the cross-industry analysis

in terms of the differential effect. The less persistent nature of energy price shocks defined at the

business cycle frequency makes it more challenging to identify effects on measures of productivity

such as energy intensity.

Summary. These results provide the first evidence that pass-through of energy prices to energy

intensity and innovative activity depends on industry-level depreciation rates. The evidence supports the

hypothesis that high depreciation industries display an effectively higher elasticity of substitution between

energy and non-energy inputs. Why would this elasticity depend on depreciation? High depreciation

industries naturally experience a higher churn of their equipment capital. When energy prices rise, these

industries then invest into equipment with higher energy efficiency. While the technology embodied in
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investment goods is inherently difficult to measure directly, the effect on green patenting rates shows a

clear increase in the demand for clean technology among high depreciation industries.

3 The Model

Model overview. The model in this section aims to describe the feedback between incentives of machine

users to replace capital and suppliers of the capital to improve the energy efficiency of those machines.

Machine users are heterogeneous in two dimensions: Across sectors, machines depreciate more slowly in

the high than in the lower durability sector. This sectoral heterogeneity mirrors the reduced form cross-

industry regressions. Within sectors, firms are subject to idiosyncratic shocks to the value of replacing

their capital. Because firms only update their technology when they replace the capital through a lumpy

investment decision, these shocks generate a distribution of vintages in each sector.

Faced with this demand side, innovating firms choose price and energy efficiency embodied in these

machines. The model features a market size effect whereby higher investment rates increase innovation

because it allows firms to spread the overhead cost of R&D over more units. Higher energy prices or more

stringent carbon policy makes energy efficient machines more valuable. At the same time, these forces

lower aggregate investment, reducing R&D incentives.

I embed this two-way relationship between adoption and technological development in a standard

macro-climate general equilibrium model a la Golosov et al. (2014). The model quantifies how slow

machine replacement shapes the effects of energy-price shocks, optimal carbon policy, and the benefits of

sector-specific interventions.

3.1 Growth model

I consider a continuous time, infinite horizon economy. The preferences of the infinitely lived, representa-

tive households are represented by the utility function

U =

ˆ ∞

0

e−ρt logC(t)dt (3)

where C(t) is consumption of the final good and ρ is the discount rate. The representative household

saves in bonds at interest rate r(t) leading to a standard Euler equation for consumption growth

∂C(t)

∂t
= C(t)(r(t)− ρ). (4)

The final output good is produced by combining manufacturing output, Xm, servicesXs and electricity

Xs

Y (t) =
(
(Xm(t)κXs(t)

1−κ)
ϱ−1
ϱ + νXe(t)

ϱ−1
ϱ

) ϱ
ϱ−1

. (5)

and denote output net of climate damages by Ỹ (t) = exp
(
−ψ

(
S(t)− S̄

))
Y (t). The term exp

(
−ψ

(
S(t)− S̄

))
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expresses aggregate productivity as a function of climate damages as in Golosov et al. (2014). S(t) denotes

the amount of carbon in the atmosphere in period t, equal to S̄ in the base-period concentration. The

dynamics of the climate system are represented as in Golosov et al. (2014):

S(t) = SP (t) + SD(t), (6)

ṠP (t) = φL E(t), (7)

ṠD(t) = −φSD(t) +
(
1− φL

)
φ0 E(t). (8)

Atmospheric concentration of carbon S(t) is the sum of carbon that remains in the atmosphere perma-

nently SP (t) and carbon that is partially absorbed by the climate system over time SD(t). A share φL of

current emissions E(t) stays in the atmosphere forever, increasing SP (t). φ0 is the share that is not im-

mediately absorbed, while φ determines the rate at which non-permanent carbon is absorbed over time.12

Emissions result from fossil fuel use decision of capital goods producers as I specify below, unlike the

DICE model where emissions are modelled in direct proportion to final output (Barrage and Nordhaus,

2024).

The three inputs Xi into this aggregate are produced as follows. Services are produced linearly

from labor Xs = ALLs(t). Manufacturing combines capital and labor using a Cobb-Douglas production

function

Xm(t) = Km(t)α(ALLm(t))1−α (9)

where manufacturing capital is in turn a composite of durable capital Km(d, t) and less durable capital

Km(nd, t) that are combined in CES-fashion with elasticity of substitution η.

Km(t) =
(
β1/ηKm(d, t)

η−1
η + (1− β)1/ηKm(nd, t)

η−1
η

) η
η−1

. (10)

The two sectors divide manufacturing into one producing with more versus less durable capital mir-

roring the reduced form analysis. By modelling manufacturing output as combining sector specific capital

with an aggregate endowment of labor, I abstract from sector specific differences in labor shares.13 Finally,

electricity production combines electricity capital and labor

Xe(t) = Ke(t)
φ(ALLe(t))

1−φ. (11)

12The Golosov et al. (2014) climate model provides a strongly simplified representation of the climate system relative to more
full-fledged models (Folini, Friedl, Kübler, and Scheidegger, 2025). Importantly, Dietz, Van Der Ploeg, Rezai, and Venmans
(2021) show that this simple representation acccurately captures the immediate link between cumulative emissions and surface
warming. The accurate representation of near term climate dynamics makes it a useful benchmark for examining how short-run
technological lock in alters carbon-policy conclusions. A shortcoming of this climate model is that it abstracts from state
dependence in terms of the climate system’s ability to absorb carbon over time (Dietz et al., 2021).

13Empirically, I find that both sectors are similar in terms of their ratio of the aggregate wage bill to value added as measured
in the NBER CES Manufacturing database.
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Electricity capital Ke(t) is a composite of fossil fuel capital Ke(f, t) and green energy capital Ke(g, t)

Ke(t) =
(
Ke(f, t)

ϑ−1
ϑ +A

1
ϑ
g Ke(g, t)

ϑ−1
ϑ

) ϑ
ϑ−1

. (12)

3.1.1 Investment dynamics.

I begin by describing the investment problem of firms producing capital goods Ke(f,m),Km(d, t),Knd(t).

Each of these sectors i consists of a mass of ex-ante identical firms Ni. I omit sectoral indices since firms

in each sector are symmetric except for the depreciation rate of their capital.

Static Profit Maximization. I first describe the static profit maximization problem for firms in

each sector and then determine their investment policy.

Firms produce output k(t) using a CES-vintage capital production function

k(t) =

(ˆ 1

0

min{Ae(ν, t− a)e(ν, t), k(ν, t)}
σ−1
σ dν

) σ
σ−1

(13)

Each machine ν combines predetermined capital k(ν, t) and machine-specific energy efficiency Ae(ν, t−a)

with a freely variable energy input e(ν, t). A continuum of machines ν ∈ [0, 1] ensures tractability when

deriving demand for new machines and thus innovation incentives of machine producers. This production

function imposes two important assumptions.

First, firms produce using vintage capital. Denoting by a the age of the machine and by t − a the

time since purchase, energy efficiency remains constant across the life of a machine. I further assume that

firms can only replace all machines ν at once, implying that t − a does not vary within the firm. All

machines are purchased at the same time, and the dynamic optimization problem underlying this decision

is described below.

Second, capital and energy are modeled as perfect complements. Given predetermined capital and

technology per machine, profits depend only on utilization, which is determined by the energy input.

Faced with an exogenous energy price pe(t) and taking the output price PK(t) as given, firms solve:

max
{e(ν,t)≤

k(ν,t)
A(ν,t−a)}ν∈[0,1]

PK(t) k(t)− pe(t)

ˆ 1

0

e(ν, t) dν s.t. (13), (14)

and the resulting energy use satisfies

e(ν, t) = min

{(
PK(t) k(t)1/σ Ae(ν, t− a)

pe(t)

)σ
,

k(ν, t)

A(ν, t− a)

}
. (15)

In equilibrium, the allocation of capital across machines, as well as their energy efficiency will be

symmetric - k(ν, t) = k(t) and Ae(ν, t− a) = Ae(t− a). In that case, Ae(t− a) and k(t) become sufficient
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statistics for firm profits. We can use the constant returns to scale assumption to write profits as

π(k(t), Ae(t− a), t) = k(t)1
PK(t)− pe(t)

Ae(t−a)
≥0

(
PK(t)− pe(t)

Ae(t− a)

)
(16)

Profits are equal to the level of capital k(t) multiplied by its marginal revenue product π̄(t) =
(
PK(t)− pe(t)

Ae(t−a)

)
which is increasing in the output price PK(t) and the level of technology Ae(t − a) and declining in the

energy price pe(t). Whenever marginal revenue is negative, the firm does not produce and profits are zero.

Profits do not differ across varieties within a firm, but they do differ across firms that replaced capital at

different times t− a. If Ae(t− a) grows over time, firms with more recent vintages earn higher profits.

Discussion of assumptions. Before describing the role of this profit function for investment dy-

namics, I briefly discuss the assumptions underlying it. Prior research documents the empirical relevance

of technological lock-in for understanding energy efficiency dynamics in manufacturing. Manufacturing

plants are most sensitive to energy prices at entry (Hawkins-Pierot and Wagner, 2023), consistent with

technological lock-in after major investments. Linn (2008) documents higher energy efficiency among

entrants than incumbents, suggesting that firms benefit from technology growth when they invest in new

capital. Second, I assume capital and energy are perfect complements within each machine. At the firm-

level, several papers estimate a very low elasticity of substitution between energy and non-energy inputs

at the firm level (Chen, Chen, Liu, Suárez Serrato, and Xu, 2025; Hawkins-Pierot and Wagner, 2023;

Ryan, 2018). Hassler et al. (2021) document a near perfect short-term correlation between the price of

energy and the energy factor share of GDP.

Dynamic Replacement Problem. Firm capital k(t) is determined through irreversible investment

in new machines. The investment decision is based on the Hamilton-Jacobi-Bellman equation

r(t)V (k, t) = π(k, t)︸ ︷︷ ︸
Profits

− δkVk + Vt︸ ︷︷ ︸
Drift

+ λ(V(k, t)− V (k, t))︸ ︷︷ ︸
Expected Replacement Gain

. (17)

Time t and capital k are the state variables of the firm’s problem. Firms also differ in technology, but

using ∂k(t)
∂t = −δk(t) we can infer age a = 1

δ log!
(
k̄(t)
k

)
and thus Ae(t− a) = Ae(t, k). k̄ denotes the level

of capital of a new machine.

The instantaneous return to capital r(t)V (k, t) has three components. First, the flow of profits the firm

makes from its capital stock π(k, t). The drift component captures deterministic capital gain dynamics

due to depreciation, δkVk, and potential transition dynamics Vt. Third, the firm receives replacement

opportunities at Poisson rate λ. Upon a replacement opportunity, firms draw an additive shock ϵ to the

value of a new machine V (k̄, t)− P (t)k̄, yielding an expected gain V(k, t)− V (k, t). The overall size of a
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new machine k̄ is exogenous.14 Replacement takes place whenever

V (k̄, t)− P (t)k̄ + ϵ > V (k, t). (18)

Conditional on the shock ϵ, firms are more likely to replace when new capital is cheap, or relatively

more profitable. The shocks can represent idiosyncratic differences in firms to switch from old to new

machines, or a random scrap value independent of the remaining capital. The endogenous cost of new

capital P (t)k̄ is derived below from innovating firms supplying the capital. Relative profitability of new

versus old capital depends on how far the old machine has depreciated, as well as the gap in marginal

products. Using the optimal policy and integrating over shocks, the expected gross gain is V(k, t) =

Eϵ
[
maxV (k̄, t)− P (t)k̄ + ϵ, V (k, t)

]
.

Law of motion for distribution. Idiosyncratic shocks across firms imply that firms replace their

capital at different times, giving rise to a distribution of capital µ(k, t). The dynamics of this distribution

are given by

∂µ(k, t)

∂t
=

∂

∂k
(δkµ(k, t))− λPR(k, t)µ(k, t) (19)

with δk̄µ(k̄, t) = λ
´ k̄
0
PR(k, t)µ(k, t)dk and in each sector we have

´ k̄
0
µ(k, t) = Ni.

15

The first term reflects inflow of firms into capital level k, while the second term reflects outflow of

all firms with capital k that receive a replacement opportunity. The replacement probability PR(k, t) =

P(V (k̄, t)−P (t)k̄−V (k, t) > −ϵ) is obtained by integrating the investment policy (18) across the density

of ϵ.

Demand for new technologies. When a firm receives a replacement opportunity, it can scrap

its existing capital and purchase a new machine composed of varieties k(ν, t). The overall size of this

machine is constrained to k̄ in the presence of constant returns and perfect competition. Firms selling

the varieties k(ν, t) also choose their energy efficiency Ae(ν, t). Thus, the demand for varieties k(ν, t)

determines innovation incentives.

Abstracting from variable utilization, the firm maximization problem determining demand for each

variety can be stated as

14The assumption of exogenous arrival rate of replacement opportunities with shocks to each option drawn upon arrival follows
Arcidiacono, Bayer, Blevins, and Ellickson (2016). An alternative approach would be to continuously allow firms to replace their
capital. Introducing idiosyncratic shocks to the resulting HJB-Variational Inequality requires adding a second state variable.
For details see Achdou et al. (2022) and related notes available on Ben Moll’s website https://benjaminmoll.com/codes/. The
current approach avoids this issue because the HJB equation holds exactly - not as an inequality - allowing me to represent the
value of capital in expected value terms, i.e. after integrating out the shocks.

15To see the intuition for the capital drift in this equation, abstract from replacement and write the share of firms with capital
in the interval [k, k + dk] at time t+ dt as

µ(k, t+ dt) dk = µ
(
k(1 + δdt), t

)
(1 + δdt) dk.

The additional factor (1+ δdt) reflects the fact that these firms come from an interval of width dk(1+ δdt). Taking a first order
approximation of µ

(
k(1 + δdt), t

)
≈ µ(k, t) + δkµk(k, t)dt and letting dt → 0 gives the result. Equivalently, we can derive the

law of motion starting from the discrete time law of motion for the cumulative distribution function. I include this derivation
in Appendix B.1.
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max
k(ν,t)

L =

ˆ ∞

t

e−H(t,τ)
[
PK(τ)

(´ 1
0
k(ν, t)

σ−1
σ dν

) σ
σ−1 −

´ 1
0

pe(τ)
Ae(ν,t)

k(ν, t) dν
]
dτ︸ ︷︷ ︸

Operating Profits

−
ˆ 1

0

p(ν, t) k(ν, t) dν︸ ︷︷ ︸
Investment Cost

+ ξ(t)
[
k̄ −

(´ 1
0
k(ν, t)

σ−1
σ dν

) σ
σ−1

]
︸ ︷︷ ︸

Capacity Constraint

.

(20)

Profits stem from operating profits over the replacement cycle net of investment cost. In the presence of

perfect competition and constant returns to scale in production, the capacity constraint k̄ pins down the

overall level of capital.

The length of the replacement cycle is stochastic as reflected by the discount factor

H(t, τ) = δ(τ − t) +

ˆ τ

t

r(u) + λPR(k̄e−δ(u−t), u)du,

summarizing depreciation, standard discounting of future profits at the interest rate and the evolution of

the replacement probability due to capital depreciation and transition dynamics. By taking into account

how this probability changes over time, firms’ sensitivity to energy prices crucially depends on future

replacement dynamics. Suppose the firm anticipates likely replacement in the future, for example because

of higher energy efficiency in the future. The firm then discounts current and future energy prices when

buying a machine today. Intuitively, current and future energy prices matter less for today’s purchase if

the firm anticipates facing those prices with a different machine than the one it is buying today.

As shown in Appendix B.2, this profit maximization problem gives rise to isoelastic demand for

machines

k(ν, t) = k̄

(
p̃(ν, t)

P̃ (t)

)−σ

(21)

where p̃(ν, t) = p(ν, t)+ p̃e(ν, t) is the sum of the up-front purchasing price p(ν, t) and life time energy

costs given by

p̃e(ν, t) =
p̃e(t)

Ae(ν, t)
=

´∞
t
e−H(t,τ)pe(τ)1PK(τ)≥

´ pe(τ)
Ae(ν,t)

dν
dτ

Ae(ν, t)
.

P̃ (t) = (
´ 1
0
p̃(ν, t)1−σdν)

1
1−σ is the associated CES price index. Demand for machines is influenced both

by the purchase price p(ν, t), as well as the downstream energy cost of the machine p̃e(ν, t).

3.1.2 Supply of Technology.

Each machine k(ν, t) is produced by a monopolistically competitive machine producer setting price p(ν, t)

and energy efficiency Ae(ν, t) to maximize profits

π(ν, t) = max
p(ν,t), Ae(ν,t)

M(t)k(ν, t)(p(ν, t)− c)− w(t)
Ae(ν, t)

1
θ

γϕ(t)
s.t. (21). (22)
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Firms’ unit margin p(ν, t)− c is the difference between the purchase price of a machine and the marginal

cost of capital c (denoted in units of the final good). Quantity sold is the product of the mass of firms

that replace M(t) =
´ 1
0
λPR(k, t)µ(k, t)dk times unit sold to each firm that replaces. R&D into energy

efficiency represents an overhead cost and is subject to decreasing returns θ < 1. Total R&D cost are

w(t)Ae(ν,t)
1
θ

γϕ(t) where γϕ(t) shifts the productivity of resources put into R&D. The optimal price equals

p(ν, t) =
σ

σ − 1
c+

1

σ − 1

p̃e(t)

Ae(ν, t)
. (23)

A simple intuition for the effect of life time energy costs on the purchase price of a machine comes from

the derived elasticity of demand

−d log k(ν, t)
d log p(ν, t)

= σ
p(ν, t)

p̃(ν, t)
< σ.

With higher energy prices, firms become less sensitive to the purchase price of a machine p(ν, t), flattening

the demand curve in k(ν, t)−p(ν, t) space, leading to an increase in markups. In a symmetric equilibrium

(cf. Appendix B.2), the first order condition for energy efficiency can be rearranged to

Ae(ν, t) = A(t) = (θγϕ(t)M(t)k̄p̃e(t)/w(t))
θ

1+θ . (24)

Higher energy prices have direct and indirect effects on the supply of energy efficiency. The direct effect

stems from higher energy prices increasing capital users’ willingness to pay for energy efficiency. Faced

with this higher willingness to pay, firms supplying the capital increase energy efficiency as machine users

are now more easily induced to buy from them. Indirect effects arise from energy prices lowering the

replacement rateM(t). The mechanism is as follows: The relative benefit of having a new machine versus

an old machine shrinks with higher energy prices. Intuitively, investing in a new machine is worthwhile if

the machine has high returns. Faced with relatively lower profitability, firms delay replacement, shrinking

the market for new machines and hence equilibrium energy efficiency. Combining (23) and (24), we obtain

the investment cost of a new machine

P (t) =
σ

σ − 1
c+

1

σ − 1

p̃e(t)

Ae(t)
. (25)

To capture spillovers from innovation, I assume that ϕ(t) represents an endogenous component of R&D

productivity and follows a simple law of motion

∂ϕ(t)

∂t
= −δAϕ(t) +Ae(t). (26)

The exogenous component γ is assumed constant. Importantly, these spillovers are not internalized

by firms because they solve a static profit maximization problem.16 In other endogenous growth models,

16The particular law of motion for research productivity implies my model shares similarities with spillovers in semi-endogenous
growth models. Along the transition path, spillovers can deliver growth in technology. In steady state, productivity is constant,
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firms benefit from R&D investment over multiple periods. In my model, firms do benefit from their own

investment because it raises future R&D productivity. Conditional on productivity ϕ(t) firms need to

invest into R&D every period to maintain a given level of technology.

Equilibrium. To close the model, I add the resource constraint

Ỹ (t) = C(t) +
∑
i

(ck̄Mi(t) + pe(t)Ei(t)) + ck̄Me(g, t) (27)

where the sum across sectors i includes the three sectors operating with fossil fuel powered capital and

Me(g, t) denotes the replacement rate into renewable using capitals. Ei(t) denotes sectoral fossil fuel

use. The remaining output is used for consumption. The labor market clearing condition states that

exogenous endowment of labor equals labor demand into R&D Lr(t), manufacturing Lm(t), services Ls(t)

and electricity production Le(t):

L = Lr(t) + Lm(t) + Ls(t) + Le(t). (28)

3.2 Model solution and Calibration.

Solution method. The steady state of the model is solved following Achdou et al. (2022). I use a

finite difference method to discretize the capital grid and solve the Hamilton-Jacobi-Bellman in equation

(17) numerically, given a guess of the endogenous variables. To solve for the distribution (19), I apply

this discretization to approximate the derivative ∂µ(k,t)
∂k and calculate the model implied replacement

probability based on the solution to the HJB. The steady state distribution (19) can then be solved as a

linear system.

Transitional dynamics are handled similarly: I discretize the time dimension following a collocation

approach similar to Hémous et al. (2023) and Schesch (2024). The endogenous variables are approximated

as Chebyshev polynomials in the time dimension.17 Time derivatives are then computed based on the

Chebyshev differentiation matrix associated with the polynomial, instead of the usual finite difference

approximation involving equally-spaced, neighbouring points (Trefethen, 2000). Using these approxima-

tions, I follow very similar steps as for the steady state to solve for the value function V (k, t) and the

distribution µ(k, t). Appendix C contains further details on the numerical methods used to solve the

model.

Calibration. I calibrate the model to cross sectional moments from the U.S. manufacturing sector

for the year 2010 as well as the difference-in-difference estimates presented in Section 2. Several key

parameters are internally calibrated using the simulated method of moments. The remaining parameters

so only exogenous growth in other factors, can deliver permanent increases in energy efficiency Ae(t). The particular specification
for spillovers is motivated by the fact that it allows me to derive an analytical expression for steady-state productivity, ϕ = A γ

δA
,

which is typically not possible in semi-endogenous models.
17I use 19 grid points in the time dimension. I assume the system has converged to a new steady state in 500 years. To deal

with non-stationarity induced by the climate system, I hold climate damages constant at the value reached after 500 years (Cai
and Lontzek, 2019).
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are set based on external sources. Table 3 lists all parameters, their values and sources used in the

calibration.

Dividing manufacturing into two sectors. The model features durable and non-durable capital

using industries. I sort the 86 four-digit industries in the NBER CES Manufacturing database based on

the depreciation rates used in the empirical analysis. Industries in the lower quartile of the distribution

of depreciation rates are sorted into the durable using sector. While the exact split is arbitrary, the

distribution of depreciation rates does not feature major spikes, justifying this procedure. I use a 25%-

75% split so that sector specific policies for durable capital using industries are sufficiently narrowly

targeted.

Externally calibrated parameters - Climate Block. The calibration of the law of motion for

the evolution of atmospheric concentration (6) involves three parameters. I follow Dietz et al. (2021) and

set the share of emissions that remains in the atmosphere permanently at ϕL = 0.2. ϕ0 = 0.402 implies

roughly 40% of non-permanent emissions are absorbed immediately. Non-permanent emissions depreciate

at rate 1 − ϕ = 0.00231. The elasticity of damages to additional increases in atmospheric concentration

is set to ψ = 0.00011, following the higher value proposed by Acemoglu, Aghion, Barrage, and Hémous

(2023). This higher value is motivated by recent literature estimating large GDP losses from increases

in temperature (Bilal and Stock, 2025; Nath et al., 2025). Initial values for the carbon stock are a stock

of permanent emissions of SP = 684GtC and a stock of emissions SD = 159GtC subject to depreciation

over time.

Externally calibrated parameters - Aggregate Production Function. I calibrate the aggregate

production function (5) by setting the labor share α = 0.5, consistent with recent evidence in Kehrig and

Vincent (2021) for U.S. manufacturing. BLS data indicates a labor share of 0.25 for electric utilities,

leading me to set φ = 0.75. Next, I determine the parameters of equation (10) mapping sector specific

capital levels into aggregate manufacturing capital. Oberfield and Raval (2021) and Bartelme, Costinot,

Donaldson, and Rodriguez-Clare (2025) estimate cross-industry elasticities of substitution around between

two-digit manufacturing sectors. Based on their estimates, I set η = 1.2. The elasticity of substitution

ϑ = 1.85 between clean and dirty energy is set following estimates by Papageorgiou, Saam, and Schulte

(2017) on the substitutability between clean and dirty capital. I set β = 0.286 based on the share of

industry value added accounted for by the durable sector.

Externally calibrated parameters - Supply of Technology. I set the elasticity of substitution σ

across capital varieties equal to 6. Since energy prices provide an additional force driving up markups (cf.

23), this leads to markups of 1.25. I assume strongly decreasing returns to R&D at the firm-level with

θ = 0.35.18 To calibrate the law of motion for research productivity ϕ(t) in (26), I assume productivity

depreciates at rate δA = 0.05. This value is consistent with estimates of organizational forgetting for

durable goods manufacturing by Benkard (2000) and on the lower end of R&D depreciation values in Hall

18This value is in line with estimates of the elasticity of patenting with respect to R&D spending in Bloom, Schankerman,
and Van Reenen (2013) of around 0.3 I discuss below that this value of θ is line with independent evidence on the elasticity of
innovation with respect to energy prices.
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(2007) for Compustat firms as a whole.

Normalized Parameters. I normalize the size of machines in both sectors to k̄ = 1 and set the

arrival rate of replacement opportunities λ = 1 as in Arcidiacono et al. (2016). With λ = 1, firms receive

an average of one replacement opportunity per year. Aggregate labor is normalized to ten, meaning the

labor productivity parameter should be interpreted in per capita terms. I also set c = 1, i.e. a unitary

conversion rate of final output to investment as is standard in neoclassical growth.

Table 3: Base-Year Model Calibration Summary

Parameter Value Source / Target

Internally calibrated parameters

Aggregate productivity AL 3610.3 World GDP (World Bank)

Mass of firms in each sector Nm, Ne 2961.9, 8883.7 Sectoral investment share (BEA)

Depreciation rates manufacturing δe(d), δe(nd) 0.03, 0.05 Perpetual-inventory–method
implied δ (NBER Manufacturing)

Taste-shock dispersion σε 5 DiD event study estimate

Energy efficiency R&D productivity γm, γe 0.602, 8.16 Sectoral fossil fuel shares

Electricity productivity ν 297.157 Electricity share of GDP

Green energy productivity Ag 0.145 Share of green electricity

Externally imposed parameters

Manufacturing share κ 0.11 Manufacturing value added
(NBER-CES) as share of GDP

Share of durable capital β 0.286 Share of durables in
manufacturing value added

Capital share (manufacturing) α 0.50 Kehrig and Vincent (2021)

Capital share (electricity) φ 0.75 BLS data

Elasticity of substitution between electricity and
service–manufacturing composite ϱ

0.25 —

Elasticity of substitution η (between Km(d, t) and
Km(nd, nt))

1.2 Oberfield and Raval (2021)

Elasticity of substitution ϑ (between Ke(f, t) and
Ke(g, nt))

1.85 Papageorgiou et al. (2017)

Within sector elasticity of substitution σ 6.0 Markup of 1.25

Knowledge depreciation δA 0.05 Benkard (2000)

Discount rate ρ 0.02 Real rate of 2 percent

Decreasing returns in innovation θ 0.35 Imposed

Industrial energy price pe(t) $12 per million
BTU

MECS data

Depreciation rates electricity δe(f), δe(g) 0.03, 0.05 -

Arrival rate of replacement opportunity λ 1.0 Normalized

Size of machine k̄ 1.0 Normalized

Internally calibrated parameters. Internally calibrated parameters. I calibrate labor pro-

ductivity AL to match the value of world GDP reported by the World Bank ($66 trillion).19

The mass of firms Ne, Nm in electricity and manufacturing is chosen to match sectoral private invest-

19While all other parameters are taken from U.S. data, I match world rather than U.S. GDP so that the social planner
internalizes global damages from CO2 emissions.
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ment into fixed assets reported in BEA data (2.4% and 0.6% of GDP for manufacturing and the power

sector, respectively). I assume an equal number of firms in each subsector. Physical depreciation rates

are chosen to match the perpetual-inventory implied rates used in the reduced-form analysis based on

NBER manufacturing data. I match the observed sectoral depreciation rates of 5.8% and 8.3%. Since

empirical depreciation rates are inflated by firms discarding capital before full depreciation (obsolescence),

physical depreciation rates are lower. I apply the same depreciation rates to clean and dirty capital in

the electricity sector, close to the calibration in Gilchrist et al. (2024) who set them to 5 and 10 percent,

respectively.

I assume shocks to the cost of replacing a machine follow a logistic distribution. I identify the scale

parameter of the distribution by matching the cross-sector DiD effect of a 1973-sized permanent energy

price shock on equilibrium energy efficiency. Specifically, I treat the DiD effect in Figure 3a as reflecting

the differential impact of energy on average energy efficiency 7 years into the transition after a permanent

250% increase in energy prices. The DiD identifies the dispersion within this model because with low

variance, the decline in investment is amplified which lowers the energy efficiency response.

The exogenous component of R&D productivity γ is set to match sectoral data on energy expenditures

relative to value added in the energy and manufacturing sectors. With lower R&D productivity, energy

efficiency falls, raising the energy share. Electricity productivity ν is chosen to match the GDP share of

electricity (1.5%). Clean energy productivity AG is calibrated so that the model matches a clean energy

share of 10% based on 2010 data for the U.S.

3.3 Validation

The model also matches key untargeted moments and transitional dynamics. I test the model with a

permanent 250% energy-price increase, mirroring the sustained increase of the early 1970s. I then run

the same difference-in-differences event study as in Figure 3 on the simulated data and compare model

predictions to data.20 Figure 5 reports the result. By construction, model and data line up 7 years into

the transition. More important, the model also reproduces the differential adjustment path between low

and high depreciation industries.

The model’s aggregate innovation response also fits external evidence. Popp (2002) estimates a long-

run elasticity of clean patents to energy prices of about 0.35, similar to Acemoglu et al. (2023). Dugoua and

Gerarden (2025) find larger elasticities, 0.5-0.6. I map these facts to the model using two shocks. With a

30% price increase, R&D labor rises 16.3% (elasticity 0.54). With a 250% increase, R&D labor rises 68.4%

(elasticity 0.27). The lower elasticity induced by large shocks reflects stronger declines in investment,

muting innovation incentives. This non-constant elasticity matches the reduced-form literature. Popp

(2002) exploits the large energy price swings of the 1970s–1980s and omits time fixed effects, so his

estimates also capture the downturn-driven drop in patenting. By contrast, Dugoua and Gerarden (2025)

20I multiply event study coefficients in Figure 3 by the difference in depreciation rates between low and high depreciation
sectors implied by my calibration.
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Figure 5: Differential Response Of Energy efficiency: Model Versus Data

Notes. This figure compares the response of average energy efficiency in the model to the event study estimates in
Figure 3. The model counterfactual corresponds to a permanent 250 percent increase in the exogenous price of
energy pe(t). Empirical event study coefficients are scaled by the difference in depreciation rates between low and
high depreciation sectors. The y-axis corresponds to the percent increase in average energy efficiency in low
relative to high depreciation industries. The comparison extends to 15 years after the energy price increase.

relies on cross-country variation and smaller swings, yielding larger elasticity estimates.

Taking stock, my model assumes that energy and capital are perfect complements at the level of indi-

vidual machines. Short-run energy use responds little, consistent with macro data. Over time, adoption

of new machinery raises energy efficiency gradually. The model quantifies differences in transition speed

driven by depreciation and fits well identified evidence on the response of clean technology to energy

prices. By matching these important moments, I can credibly evaluate how slow adoption shapes the

clean transition.

4 Quantitative Analysis

4.1 Aggregate Effects of Energy Price Shocks

I start by analyzing the effects of a permanent, 250% increase in the price of energy. Energy price swings of

this magnitude were observed in the 1970s (cf. Figure 2) or among European countries after the Ukraine

war.21 Figure 6 presents the transitional dynamics resulting from this shock. All variables are expressed

relative to their pre-shock steady state value. Results on the effects of energy price shocks abstract from

climate-economy feedback.22

Panels D11a and D11b show the evolution of Ae(t), the energy efficiency embodied in new machines,

and the average energy efficiency embodied in machines active in the market Āe(t) =
´ k̄
0
A(k)µ(k, t)dk.

21See data on industrial energy prices available from https://www.gov.uk/government/statistical-data-sets/

international-industrial-energy-prices.
22This assumption matters for longer-run outcomes because I calibrate the model to the world economy, so the feedback from

low emissions to damages is non-trivial.
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(a) Energy efficiency of new machine Ae(t) (b) Average energy efficiency, Āe(t)

(c) Investment (d) Consumption and GDP

Figure 6: Transition Dynamics After Permanent 250 Percent Increase In The Price Of Energy.

Notes. This figure presents simulated responses of sectoral and macroeconomic aggregates in response to a
permanent 250 percent increase in the exogenous price of energy pe(t). The y-axis measures responses relative to
the baseline value of the variable prior to the shock. The simulations do not account for feedback from emissions
to climate damages.

Energy efficiency of new machines increases relatively quickly for both manufacturing industries. The

response of fuel efficiency in electricity generation is smaller quantitatively and takes more time to mate-

rialize. These dynamics are driven by gradually rising R&D productivity via the law of motion for ϕ(t) in

equation (26). Additionally, Figure D11c shows sharp initial declines in investment in fossil-fuel-using sec-

tors. The initially low investment rates depress R&D incentives and even lead to a small decline in energy

efficiency in the fossil fuel sector. The collapse in fossil fuel electricity is particularly pronounced because

clean-energy producers not directly affected can gain market share after the shock.23 Improvements in

Ae(t) translate into a drawn-out increase in average efficiency Āe(t) (Figure D11b). The differential effect

between durable and less durable manufacturing mirrors the event study results shown in Figure 5. The

high depreciation sector has higher investment rates and exhibits faster convergence rates. The prolonged

collapse in investment into fossil fuel using electricity leads to a very slow transition of energy efficiency

23Further contributing to the dynamics of investment is the low initial profitability of investment. As the economy transitions
to a lower capital stock, capital goods prices increase along the transition. With profitability increasing, firms delay their
investment.
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Figure 7: Fuel Shares After Permanent Increase In Energy Price

Notes. The figure plots the simulated dynamics of the fuel cost share in manufacturing and electricity production
after a 250 percent permanent increase in the price of energy. The y-axis shows the value of the fuel cost share
relative to its pre-shock value. The cost share increases by 2.5 on impact. The dotted lines show fuel cost shares
in the respective sectors if energy efficiency is held fixed at its pre-shock value.

in that sector. Turning to macroeconomic aggregates, Panel D11d shows that both consumption and

output decline after the shock. The decline in consumption is more pronounced initially as higher energy

prices force consumers to cut back immediately.24 As investment rises again, consumption further drops,

and then recovers slightly as the response of technology partially undoes the effect on energy spending.

Output is initially almost unaffected because capital is fixed in the short term and there is no effect on

utilization in my model. The fall in investment then leads to a fall in output over time. Effects on output

and consumption are relatively moderate given that the fuel cost share in my calibrated model is only

about 1.7%. The model omits energy spending on transport and buildings, which makes up a significant

share of aggregate energy spending.

While capital and energy are perfect complements at the level of individual machines, adoption of more

energy efficient varieties makes capital and energy substitutable over time. To illustrate this effect, Figure

7 plots fuel cost shares for the manufacturing and electricity sector over time. As energy prices increase by

a factor of 2.5, the energy share increases by the same factor initially, reflecting perfect complementarity

between capital and energy in the short run. In the manufacturing sector, the fuel share then slowly

declines over time as firms adopt clean capital. Eventually, the fuel cost share converges to around 1.8

times its pre-shock level. The implied long-run elasticity of substitution is thus about 0.3.25 In the power

generation sector, the transition is more rapid because renewables expand quickly and fossil fuel generation

24The energy price driven decline in consumption can provide substantial amplification in demand determined economies
(Auclert, Monnery, Rognlie, and Straub, 2023; Känzig, 2023).

25Suppose, in the long-run, sectoral production is given by F (K,E) =
(
K

σ−1
σ + E

σ−1
σ

) σ
σ−1

. Normalizing the price of K to
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collapses. The implied long-run elasticity of substitution is 0.35. The dotted lines show what happens if

technology is held fixed. In that case, the manufacturing energy cost share barely declines. The small

decline is driven by substitution between sectors based on initial differences in energy efficiency. For the

electricity sector, the cost share behaves very similar without adoption. Since technology adoption is very

slow in that sector, fuel efficiency improvements only become more important in the long run. Without

them, the long run fuel cost share would be 22 percent higher. These results show the importance of

innovation in generating substitutability between capital and energy.

Since these long-run elasticities are significantly below the Cobb-Douglas benchmark frequently used

in the literature, I consider robustness of my results to larger long-run elasticities. To do so, I modify

the law of motion for ϕ(t) in equation (26) to generate a partial equilibrium, steady state elasticity of

energy efficiency Ae to energy prices that is twice as large as in the baseline case. Appendix D contains

details on the recalibration and Figure D11 repeats the exercise from Figure 6. The results are intuitive:

Energy efficiency increases significantly more in the long-run, which translates into smaller declines in

GDP, investment and consumption in the long-run. Short- to medium-run effects effects are very similar,

however. Figure D12 considers how the larger effects on technology translate to energy use. The larger

long-run improvements primarily manifest after around 25 years of the transition, with almost identical

declines in aggregate energy use for the first 25 years. The similar short-term behavior of average energy

efficiency and energy use reflects the fact that independent of the long-run elasticity, the short-run decline

in investment constrains short-term energy efficiency improvements. Overall, these findings suggest that

short-to-medium run transition dynamics are robust to different calibrations of the long-run elasticity.

Next, I show that changing the speed of adoption by increasing depreciation leads to faster improve-

ments in energy efficiency and more rapid decarbonization. To establish this, I recalibrate my model so

that the average implied depreciation (accounting for obsolescence) across sectors equals 0.138 or, equiv-

alently, a half-life of 5 years.26 I then compare energy demand and technology adoption in response to

the same 250 percent increase in energy prices. Results from this exercise are shown in Figure 8.

Panel 8a compares the response of average energy efficiency for the durable manufacturing sub-sector

across models. The dotted line shows much faster convergence, similar to the cross-sectoral differences

in convergence speed across sectors. These differences then also translate to a differential response of

aggregate energy demand. In the long-run, both models respond similarly to the energy price shock.

However, there are significant differences in the short to medium. Since improvements in energy efficiency

only manifest themselves in delayed fashion, cumulative energy demand in the main model is 7.7% higher

over the first 25 years of the transition. This finding also shows that abstracting from slow depreciation

1, the first order condition for cost minimizations can be expressed in therms of the cost share of energy se:

se
1− se

= p1−σ
e .

The implied σ can be computed based on solving this equation in changes ŝe
1−se

= p̂e
1−σ, where x̂ denotes the gross change.

26The model is recalibrated so that the higher depreciation model still matches the same data on aggregate energy demand
and capital.
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(a) Āe(t) in durable manufacturing subsector (b) Aggregate Energy Demand

Figure 8: Technology and Energy Demand Comparisons

Notes. This figure compares the response of average energy efficiency and aggregate energy demand across
models. The dotted line corresponds to a model with average depreciations across sectors set to 0.138, implying a
half-life of 5 years. The straight line corresponds to the main model. The model counterfactual corresponds to a
permanent 250 percent increase in the exogenous price of energy pe(t). The y-axis measures responses relative to
the baseline value of the variable prior to the shock.

is not innocuous. Many climate-economy endogenous growth models assume full depreciation between

periods by arguing that most capital is depreciated after 5 or 10 years (Acemoglu et al., 2012; Casey,

2023). In doing so, these papers drastically overstate the speed of technology adoption, with quantitatively

important implications for the speed of the energy transition.

4.2 Policy Analysis

4.2.1 Optimal Policy

After illustrating the main mechanics of the model, I study the optimal climate policy. Following Nuño

and Moll (2018), I set up the social planner problem as a constrained maximization problem treating the

law of motion for the distribution µ(k, t) as a constraint. To economize on notation, I state the problem

for a single energy-using sector. All qualitative results extend to the multisector case, and quantitative

results use the full model.

The social planner maximizes consumption plus utility from replacement shocks. Since these are ex-

pressed in dollar terms in competitive equilibrium, I multiply them by the marginal utility of consumption

to express them in utility terms. The utility-maximization problem is subject to four constraints: the law

of motion for the climate block, the law of motion for the distribution over capital levels, a resource con-

straint, and a labor-market-clearing condition. I solve for the welfare-maximizing allocation which can be

decentralized by using a carbon tax, output subsidy to innovating firms and an innovation subsidy. In this

formulation, the planner does not internalize effects of replacement or innovation on future research pro-

ductivity via the law of motion for ϕ(t) in equation (26). While this is done for computational reasons as
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the dynamic innovation subsidy is not available in closed form, this is unlikely to matter quantitatively.27

max
{C(t),S(t),µ(t),h(k,t,ϵ),Ae(t)}

ˆ ∞

0

e−ρt
[
logC(t)

]
dt+ λC(t)λ

ˆ k̄

0

ˆ
µ(k, t)h(k, t, ϵ) ϵ f(ϵ) dϵ dk

s.t. λC(t) : C(t) = exp
(
−ψ[S(t)− S̄]

)
Y (t)− pe(t) E(t)− I(t)︸ ︷︷ ︸

Resource constraint

, ∀t

λL(t) : L̄ = LR(t) + LP (t)︸ ︷︷ ︸
Labor market clearing

, ∀t

η(t) : Ṡ(t) =
[
φL + (1− φL)φ0

]
E(t)− φ(1− φL)φ0

ˆ ∞

0

e−φu E(t− u) du︸ ︷︷ ︸
Climate dynamics

= 0, ∀t

j(k, t) :

µ̇(k, t) =
∂

∂k

(
δk µ(k, t)

)
− λµ(k, t)

ˆ
h(k, t, ϵ) f(ϵ) dϵ

+ λ1k=k̄

ˆ k̄

0

µ(x, t)

ˆ
h(x, t, ϵ) f(ϵ) dϵ dx︸ ︷︷ ︸

KFE

, ∀(k, t) ∈ [0, k̄]× [0,∞)

where E(t) =
ˆ k̄

0

µ(k, t)
k

A(k)
dk and I(t) = k̄

ˆ k̄

0

µ(k, t)

ˆ
h(k, t, ϵ) f(ϵ) dϵ dk

and LR(t) =
Ae(t)

1
θ

γϕ(t)
and Y (t) as in (5).

After observing replacement shocks ϵ to all firms receiving a replacement draw, the planner chooses

to replace h(·) = 1 whenever

h(k, ϵ, t) =


1 if j(k̄, t)− j(k, t)− λC(t)k̄) + λC(t)ϵ > 0,

0 otherwise.

This replacement policy mirrors the replacement behavior of firms in the competitive equilibrium:

Firms replace their capital if the private value of replacement exceeds the value of continuing with the

existing machine. The planners replacement rule is characterized in terms of the social value of marginally

more firms with capital k, j(k, t), and the social cost of investing, λC(t)k̄. The planner replaces whenever

the marginal social value of new capital, j(k̄, t) − λC(t)k̄, exceeds the marginal social value of a firm of

continuing to operate with current capital j(k, t). I assume the planner treats the shocks to the value

of replacement ϵ̃ = λC(t)ϵ as increasing utility, but rearranging the planner problem to include them

in the resource constraint shows that an interpretation in terms of shocks to the cost of replacement is

equivalent.

To derive a HJB equation characterizing the value of j(k, t), I algebraically manipulate the constraint

on the law of motion for µ(k, t). First, we can integrate out the replacement policy to rewrite terms

27In particular, I compare the allocation with carbon taxes to a business as usual scenario where only the remaining ineffi-
ciencies are shut down via the appropriate policy tools. I have also quantified the effects of carbon taxes without any knowledge
spillovers, whether internalized or not. While the innovation response is smaller, the effects are very similar.
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involving h(k, t) as λ(J (k, t)− j(k, t)) where J = Eϵmax{j(k̄, t)− λC(t)(k̄ − ϵ), j(k, t)}. Second, we can

integrate e−ρtj(k, t)(µ̇(k, t) − ∂
∂k (δkµ(k, t))) by parts as in Nuño and Moll (2018). With these steps in

place, shown in more detail in Appendix B.3, we can take the (Gateaux) derivative with respect to µ(k, t),

noting the dependency of aggregate output, investment and emissions/energy on the distribution. Doing

so allows us to derive the HJB equation that characterizes the the social marginal value function j(k, t).

ρ j(k, t) = λC(t) k

[
e−ψ (S(t)−S̄) ∂Y (t)

∂K(t)
− pe(t) + Λ(t)

A(k)

]
︸ ︷︷ ︸

Profits

(29)

+ ∂tj(k, t) − δ k ∂kj(k, t)︸ ︷︷ ︸
Drift

(30)

+ λ
(
J (k, t)− j(k, t)

)︸ ︷︷ ︸
Replacement gain

. (31)

Analogous to the firm-level HJB for V (k, t), the instantaneous social return ρj(k, t) comprises “profits”

proportional to machine capital k, a drift component, and the expected gain from a replacement oppor-

tunity. The main difference from the firm HJB is that the profit component is adjusted for the social

cost of carbon (SCC), Λ(t). Additionally, the cost of replacing a machine is λC(t)k̄ which contrasts to

the competitive equilibrium where firms pay a markup over marginal cost.28 The social cost of carbon is

given by the continuous-time analogue of the formula in Golosov et al. (2014):

Λ(t) =
η(t)

λC(t)
= ψ

ˆ ∞

t

e−ρ(τ−t)
λC(τ)

λC(t)
e−ψ [S(τ)−S̄] Y (τ)

[
φL + (1− φL)φ0 e

−φ(τ−t)
]
dτ. (32)

Intuitively, Λ(t) captures present and future damages of increasing emissions today. The model assumes

these damages come in the form of current and future losses in productivity. Future output Y (τ) is valued

at the marginal utility of consumption λC(τ). The term in square brackets accounts for the link between

emissions and future carbon concentrations. As emissions are slowly absorbed into the atmosphere, their

impact on future damages falls. One important assumption in the Golosov et al. (2014) formulation of

damages is that, for a constant income to consumption ratio λC(t)Y (t), the SCC is is constant with respect

to cumulative emissions. This means the cost of an additional ton of CO2 does not rise with atmospheric

concentration. Thus, slowly declining emissions do not affect optimal tax rates in this formulation because

the SCC remains constant even as atmospheric concentration S(t) rises. If damages are more convex, as

would be required to rationalize carbon budgets or warming thresholds, a lower elasticity of emissions to

carbon taxes on the transition would also justify higher taxes.

The optimal level of energy efficiency is given by the derivative with respect to Ae(t)

−
(ˆ ∞

t

λC(τ)e−ρ(τ−t)
(
pe(τ) + Λ(τ)

) ∂E(τ)
∂Ae(t)

dτ

)
= λC(t)

λL(t)

γθϕ(t)
Ae(t)

1
θ−1. (33)

28If Λ(t) = 0, the replacement decision of firms is efficient. This can be seen from setting j(k, t) = λC(t)V (k, t) = V (k,t)
C(t)

, i.e.
after converting the social marginal value function from utils to dollars, the HJB equations are equal.
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The left hand side measures the discounted benefit of energy savings ∂E(τ)
∂Ae(t)

in all future periods.29

These benefits reflect lower energy imports and lower climate damages. Discounted future energy savings

are equal to ˆ ∞

t

e−ρ(τ−t)
∂E(τ)
∂Ae(t)

dτ = −
´∞
t
k̄e−(δ+ρ)(τ−t)µ(k̄e−δ(τ−t), τ) dτ

Ae(t)2
. (34)

Energy savings accrue over the replacement cycle of firms that adopt the machine µ(k̄, t). As capital

depreciates, and firms receive new replacement draws, the share of initial adopters still using Ae(t) falls.

Additionally, the initial capital k̄ depreciates physically, lowering potential energy savings as energy

demand from a machine falls. Putting these together and rearranging yields

Ae(t) =

[
θγϕ(t)

λL(t)

ˆ ∞

t

e−(ρ+δ)(τ−t) λ
C(τ)

λC(t)
k̄ µ
(
e−δ(τ−t), τ

) (
pe(τ) + Λ(τ)

)
dτ

] θ
1+θ

. (35)

This expression is conceptually equivalent to the energy efficiency choice of innovating firms in com-

petitive equilibrium. In particular, Appendix B.3 shows that, in both cases, sensitivity to current and

future energy prices depends on the share of firms adopting at time t and on how many firms still use the

technology in future periods, as determined by the evolution of the replacement hazard.

Optimal Policies Quantified. To study the quantitative effects of the optimal climate policy, I

compare the economy without carbon taxes to one where I impose the optimal carbon tax from equation

(32). The business-as-usual scenario is an economy in which I correct the markup distortion but impose

no further tax on energy. Figure 9 presents the results.

Panel 9a shows the dynamics of GDP and consumption. Consumption initially increases as investment

falls in response to a higher cost of capital, followed by a slight dip as lower investment reduces output.

Eventually, abatement benefits dominate: lower climate damages raise GDP and consumption above the

business-as-usual scenario without the carbon tax. The technology response in Panel 9b is similar in

magnitude to that in Figure D11a following a large energy-price shock.

The lower two panels of Figure 9 compare carbon taxes and energy demand in the main model to

models with higher and lower elasticities of substitution between capital and energy. In both the Cobb-

Douglas and Leontief case, I abstract from innovation - energy efficiency remains fixed at its pre-shock

value. Additionally, households own capital, and investment is reversible, as in the neoclassical growth

model. These models can be seen as extending the Golosov et al. (2014) model to multiple forms of

capital. All three models are calibrated to match the same level of capital and energy demand in each

sector. I provide analytical and calibration details in Appendix B.4.

Across models, I find similar paths for carbon taxes, with slight growth along the transition as con-

sumption rises. While the tax rate is similar, there are significant differences in the response of energy

demand (Figure 9d). The Cobb-Douglas case predicts a drastic, immediate reduction in energy use.

Transitional dynamics are relatively unimportant in that case, as energy can fall without significant re-

29I omit the energy efficiency choice of each variety ν. Given symmetry across varieties ν, the planner chooses a common
level Ae(ν, t) = Ae(t).

34



(a) Consumption & GDP (b) Ae(t)

(c) Tax across models (d) Energy demand across models

Figure 9: Optimal Climate Policy Versus Business as Usual

Notes. This figure compares the responses of sectoral and macroeconomic aggregates under the optimal carbon
tax to a business-as-usual scenario. The business-as-usual scenario implements a set of production subsidies that
undo the markup distortion in machinery production. The dashed and dotted lines in the lower panels refer to
neoclassical growth models with fixed energy efficiency. The dotted line assumes capital and energy are combined
in Cobb-Douglas fashion, while the dashed line assumes they are perfect complements.

ductions in the aggregate capital stock. The Leontief economy with zero substitutability between capital

and energy has similar short-run energy dynamics as my main model. However, as technology improves,

energy demand continues to fall in the model with endogenous technology, generating substantial further

energy savings. The short-lived transitions in both models show that it is the interaction of adoption and

incomplete depreciation that leads to drawn out transitional dynamics.30

If marginal damages are increasing in cumulative emissions rather than constant as in Golosov et al.

(2014), optimal tax rates can be much higher. The Paris agreement goal of limiting warming to 2

degrees would for example require cutting emissions by around 60 percent by 2050. To illustrate the

difference in tax required to meet such targets, I ask how high the carbon tax must be to achieve the

same emissions reduction implied by the Cobb-Douglas model in Figure 9d 25 years into the transition. I

find the tax required to achieve this must be nearly four times higher at around 600 dollars. Figure D13

30The swift transitional dynamics in the neoclassical growth model match the findings in King and Rebelo (1993).
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shows energy use dynamics implied by these tax scenarios. Notably, the constant tax only achieves this

emissions reductions after 25 years, with 38 percent higher cumulative energy use within the first 30 years

compared to the reduction in the Cobb-Douglas model with a much lower tax. In Figure D14, I compare

the investment response across the two tax scenario. Investment declines significantly more in response

to the higher tax rate, illustrating the cost of large carbon taxes. These findings illustrate that if the SCC

is highly convex, optimal policy requires drastically higher taxes, especially if emissions reductions are to

occur soon. Figure D15 illustrates the same idea by using a damage function exp
(
−ψ(S(t)− S̄)2

)
as in

Campiglio et al. (2022). I recalibrate ψ to match the SCC at t = 0 as in the main model. This calibration

implies 10-15 percent higher taxes in the baseline model relative to Cobb-Douglas, and 10 percent lower

relative to the zero substitutability case implied by the Leontief aggregate production function.

4.2.2 Replacement Subsidies

Governments regularly subsidize investment in high-durability assets. For example, bonus depreciation

policies primarily lower investment costs for long-duration assets (Curtis, Garrett, Ohrn, Roberts, and

Suarez-Serrato, 2023; Zwick and Mahon, 2017). By stimulating investment, market size effects may in-

crease energy efficiency. However, such policies also have scale effects by investment into machinery. There

has also been a proliferation of policies aiming to stimulate investment in machinery to lower plant-level

environmental footprints. The Inflation Reduction Act set aside $10 billion to subsidize manufacturing

firm investments capable of reducing facility level carbon emissions by more than 20 percent.31 In the

EU, the German government plans to spend $4.6 billion to support adoption of low-emissions machinery

in durable manufacturing industries. To investigate the effects of these types of subsidies, I proceed as

follows. First, I analyze replacement subsidies that do not differentiate between vintages, similar to bonus

depreciation policies. Then, I extend the model to allow firms to choose a machine that operates on

electricity and analyze subsidies for lower-emissions machinery.

To analyze bonus depreciation policies, I assume firms receive a 5 percent subsidy to the cost of

investing into a new machine, broadly in line with the fiscal cost of bonus depreciation policy passed

under the Tax Cuts and Jobs Act in 2017.32 Figure 10 displays the results. In Panel 10a, I plot the

responses of sectoral capital stocks, with both manufacturing and power sector capital rising by around

2 percent. This long-run response implies a long-run elasticity of capital with respect to the user cost

of capital of about 40%, in line with estimates surveyed in Chodorow-Reich (2025). Panel (10b) shows

that this increase in investment leads to a small increase in average energy efficiency through a market

size effect in equation (24). The net effect of the increase in scale and the improvement in efficiency

is the increase in aggregate energy demand of slightly less than 1 percent shown in Panel (10c). Thus,

31See https://www.irs.gov/credits-deductions/businesses/advanced-energy-project-credit for policy details.
32Bonus depreciation has a fiscal cost over 10 years on the order of $30 billion per year (Curtis et al., 2023). This cost estimate

can be compared to annual manufacturing investment spending into equipment of around $200 billion. Taking into account
that not all bonus depreciation tax cuts go to manufacturing plants, I approximate the policy with a 5 percent subsidy that I
also apply to the clean and fossil fuel power plants.
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(a) Ki(t) (b) Āe(t)

(c) Aggregate Energy Demand

Figure 10: Technology and Energy Demand Response To Replacement Subsidies.

Notes. This figure shows the response of average energy efficiency, sectoral capital and aggregate energy demand to a
permanent 5% subsidy to the cost of investing.
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unconditional investment subsidies do not raise energy efficiency enough to reduce overall energy demand

and emissions.

4.2.3 Electrification

Next, I study the effectiveness of carbon taxes and replacement subsidies when firms can electrify produc-

tion. Electrification is central to the green transition, since improvements in renewable energy may enable

advanced countries to decarbonize the power sector. However, electrification also requirees turnover of

the capital stock. This makes my model a suitable laboratory to investigate whether carbon taxes and

subsidies can steer firms to electrify. The baseline model abstracted from electrificaiton because U.S.

manufacturing firms rely primarily on fossil fuels to meet their energy demand. MECS data indicate that

about 87% of U.S. manufacturing energy demand is met by fossil fuels, with only 13% from electricity.

Electrification rates are much higher in other advanced countries (Kaartinen and Prane, 2024). This

discrepancy indicates the availability of alternative technologies allowing manufacturing firms to produce

with electricity.33

To study these issues, I extend the firm-investment model to allow firms to switch between fuel types

at replacement opportunities. Let VF denote the value of a fossil fuel machine and VE the value of an

electrified machine; the system of Bellman equations becomes:

r(t)VE(k, t) = πE(k, t) − δk ∂kVE(k, t) + ∂tVE(k, t) + λ
(
VE(k, t)− VE(k, t)

)
, (36)

r(t)VF (k, t) = πF (k, t) − δk ∂kVF (k, t) + ∂tVF (k, t) + λ
(
VF (k, t)− VF (k, t)

)
. (37)

Replacement opportunities arrive at rate λ and when faced with a replacement opportunity a firm chooses

between replacing with a machine using the same fuel, a machine using a different fuel or continuing to

operate with the current machine. Machines differ in their purchase price, but I abstract from switching

costs. Each option comes with a choice-specific shock and I assume these shocks are drawn from common

distribution. The fuel-specific expected values of a replacement opportunity are

VF (k, t) = Eε
[
max

{
VF (k̄, t)− k̄ Pf (t) + εFrep, VE(k̄, t)− k̄ Pe(t) + εFsw, VF (k, t) + εFkeep

}]
, (38)

VE(k, t) = Eε
[
max

{
VE(k̄, t)− k̄ Pe(t) + εErep, VF (k̄, t)− k̄ Pf (t) + εEsw, VE(k, t) + εEkeep

}]
. (39)

Using the fuel-specific replacement and switching rates, we can write the law of motion for the distribution

33These differences in electrification rates are also apparent at the sector level. Figure A10 plot the share of energy demand
coming from electricity across three-digit NAICS sectors in U.S. manufacturing. Comparing to Figure 1 in Kaartinen and Prane
(2024), rates of electrification are much lower in U.S. compared to Swedish manufacturing, even within these broad sectors.
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(a) Electricity Share in Manufacturing (b) Aggregate Energy Demand

Figure 11: Electrification In Response to Carbon Taxes

Notes. This figure shows the response of the share of energy demand coming from electricity and the aggregate
fossil fuel demand. The right hand panel compares fossil fuel demand in the baseline model (straight line) to the
extension allowing for electrification (dashed line).

of firms as

∂tµF (k, t) = ∂k
(
δ k µF (k, t)

)
− λ

(
P rep
F (k, t) + P sw

F (k, t)
)
µF (k, t), (40)

∂tµE(k, t) = ∂k
(
δ k µE(k, t)

)
− λ

(
P rep
E (k, t) + P sw

E (k, t)
)
µE(k, t). (41)

Electrified machines combine predetermined capital with electricity. To determine profits, I assume

a constant electricity price set so that electricity costs equal fossil fuel costs.34 For simplicity, these

electrified machines are assumed to be supplied by perfectly competitive producers that do not innovate.

Thus, I calibrate the cost Pe(t) of an electrified machine to match the share of manufacturing energy

demand coming through electricity. To validate this model of fuel- switching, I rely on reduced form

estimates of fuel switching in response to carbon prices from Kaartinen and Prane (2024). They find a

10 percent increase in the share of energy coming from electricity among manufacturing firms. My model

predicts a long-run response of 12%, close to their event study estimates at longer horizons. To illustrate

how fuel switching changes the response to carbon prices, I consider transitional dynamics in response to

an ad-hoc carbon price of $60. The results are shown in Figure 11.

Panel 11a shows that the electricity share nearly doubles. The mild overshoot is explained by the

gradual improvement of energy efficiency which makes fossil fuel machines relatively more attractive later

in the transition. The fuel switching response has a significant effect on the elasticity of manufacturing

fossil fuel demand in response to the carbon tax increase. The straight line in Panel 11b shows fossil fuel

demand over time in the baseline model. Since fuel switching occurs rapidly, fossil fuel demand falls much

faster in the model with electrification. Transition dynamics are much faster with electrification because

34The model could accommodate richer electricity price calibrations or a general equilibrium extension where electricity is
purchased from the power sector. I opt for a simpler version because manufacturing firms differ widely in the prices they pay
for electricity. Capturing these complexities accurately is beyond the scope of this paper.
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it allows firms to avoid the carbon tax entirely. The baseline model features a slower transition, as energy

efficiency improves gradually in response to carbon taxes (Figure 9b). This gradual improvement makes

immediate replacement unattractive for firms.

Finally, I consider replacement subsidies to incentivize electrification. In particular, I assume the

government makes the subsidy available only to firms purchasing an electrified machine, holding the

total policy cost constant. Similar to the $60 carbon tax, the subsidy doubles the share of electricity in

manufacturing energy demand. Figure 12 shows how the two subsidies compare in terms of their effect

on manufacturing energy demand.

Figure 12: Fossil Fuel Demand in Response to Uniform and Electrification Subsidies

The straight line shows the increase in fossil fuel use in the baseline model as in Panel 10c. The

dashed line shows that electrification lowers fossil fuel demand by around 10%. Notably, this transition

occurs rapidly. The rapid transition is driven by firms anticipating growth in the capital stock. This

growing capital stock leads to declining profits along the transition, making early adoption beneficial.

These differential effects of subsidies amount to a 13 percent reduction in cumulative energy use over

the first 25 years of the transition. These results illustrate the promise of electrification in delivering a

more rapid reduction in fossil fuel use. The overall environmental implications hinge on whether the fuel

mix used to supply the additional electricity is sufficiently clean. The results presented are indicative of

the potential of electrification if it allows firms to fully avoid carbon taxes. If a significant fraction of

electricity is produced using fossil fuels, electrification is likely to be less attractive because carbon taxes

would pass through to electricity prices.
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5 Conclusion

The transition towards less fossil fuel intensive production requires replacing slowly depreciating capital

with lower emissions vintages. I show empirically that capital durability shapes these transition dynamics.

Industries with less durable capital adjust to energy price shocks, with larger improvements in energy

efficiency among high depreciation industries. These improvements in energy efficiency are accompanied

by increases in green innovation, consistent with feedback between adoption and innovation. To study

how this feedback affects the green transition, I calibrate a multisector IAM with vintage capital and

endogenous improvements in energy augmenting technology. The complementarity between capital and

energy combined with the slow adoption of new vintages make energy demand highly inelastic in the

short-run. Assuming counterfactually high depreciation rates leads to much faster adoption and a greater

elasticity of fossil fuel use with respect to carbon taxes. These findings illustrate that slow adoption limits

the power of technology to lower emissions in the short-run. To spur adoption, policy makers frequently

provide manufacturing firms with generous investment subsidies. My model captures an important benefit

of such subsidies: By raising investment, these subsidies incentivize innovation. Model simulations show

that such efficiency improvements are outweighed by scale effects, raising overall energy use. While these

findings caution against the use of uniform subsidies, I also consider subsidies targeted at electrifying

manufacturing firms. My model predicts a doubling of the share of energy demand from electricity if

existing subsidies were conditioned on electrification.

Overall, this paper is part of an emerging literature emphasizing the role of capital adjustment costs

for climate dynamics (Dietz et al., 2021). An open question is whether capital replacement is always

efficient once carbon taxes are in place. There may be spillover effects when firms switch towards cleaner

vintages. My model considers spillovers to innovation, but other forms of spillovers may render firm

replacement decisions socially inefficient. An example would be lower switching costs if many firms

adopt simultaneously. The existence of such spillovers would further justify policies that coordinate and

accelerate the transition to clean technology.
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A Data and Robustness Checks

A.1 Methods.

Depreciation Rates. National and industry-level economic accounts construct asset j capital stocks

based on the formula Kj,t =
∑Sj

j ϕj,iIj,t−1 where i ∈ {1, Sj} denotes how many years ago the investment

took place with Sj being the maximum possible service life (Gilbert and Mohr, 1996). The parameters ϕ

summarize the underlying age-efficiency function: How much does an investment from year i contribute to

the current capital stock j in year t? To calibrate this extended perpetual inventory method, the Federal

Reserve Bank combines BLS data on mean service lifes of individual assets with probabilistic model of

discard and decay of capital goods. This calibration goes back to pioneering work by Hulten and Wykoff

(1981) that used prices of used equipment to determine rates of decay.

The perpetual inventory method in equation (1) simplifies this model to by assuming a constant rate

of decay as capital ages. Depreciation rates obtained from inverting (1) thus partially capture changes in

relative share of vintages. A boom in investment may lower depreciation since the Fed model assumes that

new assets depreciate less than older assets. Since investment is highly cyclical, I average the depreciation

rates across the post-1990 period to smooth out such effects.

Local Projection Implementation. To estimate the effects of oil-price shocks on industry-level

outcomes I the following local projections framework

yi,t+h − yi,t = α+ βt+hshockt + γtx
′
t + ϵt for h ∈ {1, 2, 3, 4}. (42)

The outcome presents the long difference between outcome y h years after the shock relative to the year

of the shock. I cumulate the oil price shocks from Baumeister and Hamilton (2019) to the annual level,

giving me the shock measure shockt. The vector of controls xt includes lags of the shock and baseline

values of the dependent variable to account for mean reversion. I additionally control for the lag of the

dependent variable, in line with the lag-augmentation approach suggested by Montiel Olea and Plagborg-

Møller (2021). Panels (a)-(d) in Figure A9 use outcomes aggregated to the the sector level, where I define

a high and a low depreciation sector based on the industries being above or below the 75th percentile

of depreciation rate distribution. To estimate the interaction effect, I estimate equation (42) on a panel

(with an observation each the for high and low depreciation sector) and add an interaction between shockt

and a dummy equal to one for the high depreciation sector. Outcomes are measured in logs.
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Figure A1: Short-run pass through and depreciation
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Note: This Figure shows a binscatter plot of the short-run, industry-level elasticity of the cost share of energy with respect
to energy prices against industry-level depreciation rates. Pass through rates are obtained by regressing the (log) energy cost
share in industry value added on the (log) real price of energy. The plot shows that short-run pass-through is uncorrelated to
depreciation.

A.2 Robustness Checks
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Figure A2: Second energy price shock - (Log) Green and Total Patents
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Note: This Figure plots coefficients {βt}15t=−5 around the two increases in the real price of energy paid by industrial users. The
dependent variable is the (log) ratio of real energy use divided by real value added. Both panels use the continuous depreciation
rate measure as the exposure variable. The left hand side shows results for (log) of green patents. The right hand side shows
effects for (log) total patents. Standard errors are clustered at the four-digit NAICS level.

Table A1: First Stage

(1)

Fixed Weight log(p) 0.461∗∗∗

(5.97)

Industry F.E. yes
Year F.E. yes
Clusters 81
F-Statistic 35.6
Observations 2268

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This Table shows the first stage regressions results from regressing industry-level energy prices on the fixed weight energy
price index used as an instrumental variable in Table 2.
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Table A2: OLS results

E/VA Share Green Patents

(1) (2) (3) (4) (5) (6)

Lagged Outcome 0.859∗∗∗ 0.855∗∗∗ 0.879∗∗∗ 0.577∗∗∗ 0.561∗∗∗ 0.537∗∗∗

(32.69) (31.27) (26.15) (6.20) (6.07) (5.51)

log(p) -0.0188 -0.0201 0.160∗ -0.127 -0.131 -0.391∗∗

(-0.36) (-0.38) (1.97) (-1.41) (-1.40) (-2.27)

log(p) x delta -2.063∗∗ -2.223∗∗∗ 10.41∗∗∗ 9.143∗∗∗

(-2.13) (-2.84) (3.31) (2.82)

Industry F.E. yes yes yes yes yes yes
Year F.E. yes yes yes yes yes yes
Controls no no yes no no yes
Clusters 81 81 81 81 81 81
Observations 2187 2187 2106 2187 2187 2106

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This Table shows OLS estimates of the differential effects of industry-level energy prices on the (log) ratio of real energy
use divided by real value added (Columns (1)-(3)) and the (log) share of green patents (Columns (4)-(6)). Columns (4) and
(6) additionally control for the interaction of baseline energy intensity and capital intensity with industry-level energy prices.
Standard errors are clustered at the four-digit NAICS level.

Table A3: OLS results: Biadic Patents

E/VA Share Green Patents

(1) (2) (3) (4) (5) (6)

Lagged Outcome 0.859∗∗∗ 0.855∗∗∗ 0.879∗∗∗ 0.529∗∗∗ 0.516∗∗∗ 0.495∗∗∗

(32.63) (31.28) (26.13) (5.90) (5.85) (5.35)

log(p) -0.0160 -0.0172 0.162∗∗ -0.127 -0.130 -0.404∗∗

(-0.30) (-0.32) (1.99) (-1.24) (-1.21) (-2.08)

log(p) x delta -2.033∗∗ -2.173∗∗∗ 10.73∗∗∗ 9.282∗∗∗

(-2.09) (-2.77) (3.20) (2.68)

Industry F.E. yes yes yes yes yes yes
Year F.E. yes yes yes yes yes yes
Controls no no yes no no yes
Clusters 80 80 80 80 80 80
Observations 2160 2160 2080 2160 2160 2080

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This Table shows OLS estimates of the differential effects of industry-level energy prices on the (log) ratio of real energy
use divided by real value added (Columns (1)-(3)) and the (log) share of biadic green patents (Columns (4)-(6)). Columns
(4) and (6) additionally control for the interaction of baseline energy intensity and capital intensity with industry-level energy
prices. Effects in columns (1)-(3) differ from A2 because the sample is restricted to industries with non-zero biadic patents in
all years. Standard errors are clustered at the four-digit NAICS level.
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Table A4: OLS results: Alternative duration measure

E/VA Share Green Patents

(1) (2) (3) (4) (5) (6)

Lagged Outcome 0.859∗∗∗ 0.861∗∗∗ 0.876∗∗∗ 0.579∗∗∗ 0.568∗∗∗ 0.542∗∗∗

(33.69) (33.52) (33.48) (6.23) (5.71) (5.12)

log(p) 0.00319 -0.00736 0.156 -0.0521 -0.0554 -0.337∗

(0.07) (-0.15) (1.63) (-0.65) (-0.64) (-1.76)

log(p) x T 0.00404 0.00950∗∗ -0.0319∗∗ -0.0285∗

(1.01) (2.39) (-2.36) (-1.94)

Industry F.E. yes yes yes yes yes yes
Year F.E. yes yes yes yes yes yes
Controls no no yes no no yes
Clusters 81 72 72 81 72 72
Observations 2187 1944 1872 2187 1944 1872

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table shows OLS estimates of the differential effects by durability of industry-level energy prices on the (log) ratio of
real energy use divided by real value added (Columns (1)-(3)) and the (log) share of green patents (Columns (4)-(6)). Columns
(4) and (6) additionally control for the interaction of baseline energy intensity and capital intensity with industry-level energy
prices. Durability is defined as the weighted average of industry-asset level service lifes reported by the BLS. Standard errors
are clustered at the four-digit NAICS level.

Figure A3: Pretrends of fuel shares: patents
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Note: This Figure shows differential effects of industry-level fuel-shares on the (log) ratio of green to total patents prior to 1990.
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Figure A4: Pretrends of fuel shares: patents
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Note: This Figure shows differential effects of industry-level fuel-shares on the (log) ratio of energy to value added prior to
1990.

Figure A5: Discrete versus continuous exposure: Second energy price shock - energy intensity
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Note: This Figure plots coefficients {βt}15t=−5 around the two increases in the real price of energy paid by industrial users. The
dependent variable is the (log) ratio of real energy use divided by real value added. The right hand side panel shows effects
using the continuous depreciation rate variable as the measure of exposure. The left hand side panel uses a dummy equal to one
for industries with depreciation rate above the 75th percentile of the depreciation rate distribution across industries. Standard
errors are clustered at the four-digit NAICS level.
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Figure A6: Discrete versus continuous exposure: First energy price shock - energy intensity
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Note: This Figure plots coefficients {βt}15t=−5 around the two increases in the real price of energy paid by industrial users. The
dependent variable is the (log) ratio of real energy use divided by real value added. The right hand side shows effects using the
continuous depreciation rate variable as the measure of exposure. The left hand side uses a dummy equal to one for industries
with depreciation rate above the 75th percentile of the depreciation rate distribution across industries. Standard errors are
clustered at the four-digit NAICS level.

Figure A7: Discrete versus continuous exposure: Second energy price shock - share of green patents
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Note: This Figure plots coefficients {βt}15t=−5 around the two increases in the real price of energy paid by industrial users. The
dependent variable is the (log) ratio of green to total patents. The right hand side shows effects using the continuous depreciation
rate variable as the measure of exposure. The left hand side uses a dummy equal to one for industries with depreciation rate
above the 75th percentile of the depreciation rate distributiona across industries. Standard errors are clustered at the four-digit
NAICS level.
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Figure A8: Impulse–response estimates from regressing industrial energy prices on oil-price shocks. Shaded areas
denote 90% and 68% confidence bands. Confidence bands are based on the lag augmentation approach by Montiel Olea
and Plagborg-Møller (2021). Estimates represent growth rates relative to the year of the shock. Shocks are constructed
based on high-frequency identified oil supply shocks from Baumeister and Hamilton (2019), aggregated to annual
frequency. Shocks are scaled scaled to increase the outcome (energy prices) by 10% on impact.
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Figure A9: Impulse–response estimates by outcome and depreciation rate. Shaded areas denote 90% and 68%
confidence bands. Confidence bands are based on the lag augmentation approach by Montiel Olea and Plagborg-
Møller (2021). All outcomes represent growth rates relative to the year of the shock. Shocks are constructed based
on high-frequency identified oil supply shocks from Baumeister and Hamilton (2019), aggregated to annual frequency.
Shocks are scaled scaled to increase the real price of energy paid by industrial users by 10% on impact.
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Figure A10: Sectoral Share of Electricity in Total Energy Consumption
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Note: This figure plots the distribution of the share of electricity in total energy consumption across 3-digit NAICS
manufacturing sectors in the U.S. Data is from the Manufacturing Energy Cost Survey.
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B Additional Derivations

B.1 Derivations HJB and KFE

This appendix provides derivations of the HJB characterizing V (k, t) in equation (17) and an alternative

derivation of the law of motion for the density µ(k, t) in (19). Both derivations start from discrete time

analogues.

Derivation HJB. Allowing for arbitrary period length dt, the discrete time analogue of (17) is the

Bellman equation

V (k, t) = π(k, t) dt+
(
1− r(t) dt

)[
(1− λ dt)V

(
k(1− δ dt), t+ dt

)
+ λ dtV

(
k(1− δ dt), t+ dt

)]
. (43)

Rearranging and dividing by dt yields

0 = π(k, t) +
(1− r dt)(1− λ dt)V

(
k(1− δ dt), t+ dt

)
− V (k, t)

dt
+ (1− r dt)λV

(
k(1− δ dt), t+ dt

)
. (44)

Multiplying the second term out, we get

(1− r dt)(1− λ dt)V
(
k(1− δ dt), t+ dt

)
− V (k, t)

dt
=
V (k, t+ dt)− V (k, t)

dt

+

[
(1− r dt)(1− λ dt)− 1

]
V (k, t+ dt)

dt

+ (1− r dt)(1− λ dt)
V
(
k(1− δ dt), t+ dt

)
− V (k, t+ dt)

dt
.

(45)

Taking limits of all three terms

lim
dt→0

V (k, t+ dt)− V (k, t)

dt
= Vt(k, t). (46)

lim
dt→0

[
(1− r dt)(1− λ dt)− 1

]
V (k, t+ dt)

dt
= −(r(t) + λ)V (k, t). (47)

lim
dt→0

(1− r dt)(1− λ dt)
V
(
k(1− δ dt), t+ dt

)
− V (k, t+ dt)

dt
= −δk Vk(k, t). (48)

Combining (46)–(48) yields

0 = π(k, t) + Vt(k, t)− (r(t) + λ)V (k, t)− δk Vk(k, t) + λV(k, t) (49)

which can be rearranged to (17).

Derivation of distribution. Denote byM(k, t) the cumulative distribution function associated with

µ(k, t)and write its law of motion as

M(k, t+ dt) =

ˆ k(1+δdt)

0

(1− dtPR(k̃, t))µ(k̃, t)dk̃.
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Split the integral in two and notice there are no firms between k(1 + δdt) and k so that

M(k, dt) =

ˆ k

0

(1− dtPR(k̃, t)µ(k̃, t)dk + [M(k(1 + δdt), t)−M(k, t)] (1− dtPR(k(1 + δdt, t)).

Subtract M(k, t) from both sides, divide by dt and and let dt→ 0. Using

lim
dt→0

M(k(1 + δdt, t)−M(k, t)

dt
= δkµ(k, t),

we obtain

∂M(k, t)

∂t
= δkµ(k, t)−

ˆ k

0

PR(k̃, t)µ(k̃, t)dk̃.

Differentiating with respect to k gives equation (19).

B.2 Derivations Demand and Supply of Machines

Production Function for E(t):

E(t) =

[(
Kφ
efL

1−φ
ef

)ϑ−1
ϑ + AG

(
Kφ
efL

1−φ
ef

)ϑ−1
ϑ

]ϑ−1
ϑ

(50)

Define ρe =
1

1−ϑ , and write the optimal labor ratio as

r =
Leg
Lef

= A
1

1−ρe(1−φ)

G

(
Keg(t)

Kef(t)

)ηe
where ηe =

φρe
1−(1−φ)ρe .

Defining Le(t) = Lef (t) + Leg(t), and using the ratio, we can write the production function as

E(t)ρe = Lρe(1−φ) (1 + r)−ρe(1−φ)
(
Kρeφ
ef + rρe(1−φ)AGK

φρe
eg

)
(51)

Using the definition of the labor ratio, we can write this as

(1 + r)−ρe(1−φ) = K
ηeρe(1−φ)
ef

(
Kηe
ef +A

1
1−ρe(1−φ)

G Kηe
eg

)−ρe(1−φ)

and (
Kρeφ
ef + rρe(1−φ)AGK

φρe
eg

)
= K

−η(1−φ)ρe
ef

(
Kηe
ef +A

1
1−ρe(1−φ)

G Kηe
eg

)
we simplify this expression to get

E(t) = Le(t)
1−φKe(t)

φ where

Ke(t) =

(
Kηe
ef +A

1
1−(1−φ)ρe

G Keg(t)
ηe

) 1
ηe

. (52)

Demand function (21). Defining p̃(ν, t) ≡ p(ν, t) +
´∞
t
e−H(t,τ) pe(τ)

Ae(ν,t)
dτ, and k(t) ≡
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( ´ 1
0
k(ν, t)

σ−1
σ dν

) σ
σ−1

, maximizing (20)

L =

ˆ ∞

t

e−H(t,τ)

[
PK(τ) k(t)−

ˆ 1

0

pe(τ)

Ae(ν, t)
k(ν, t) dν

]
dτ −

ˆ 1

0

p(ν, t) k(ν, t) dν + ξ(t) [ k̄ − k(t) ].

with respect to k(ν, t) gives

(ˆ ∞

t

e−H(t,τ)PK(τ) dτ − ξ(t)

)
k(t)1/σ k(ν, t)−1/σ = p̃(ν, t).

which can be rearranged to

k(ν, t) = k(t)

(´∞
t
e−H(t,τ)PK(τ) dτ − ξ(t)

p̃(ν, t)

)σ
. (*)

Defining the CES price index

P̃ (t) ≡

( ˆ 1

0

p̃(ν, t) 1−σ dν

) 1
1−σ

,

the lagrange multiplier on the capacity constraint ξ(t) is equal to the discounted marginal product of

capital net of the energy inclusive cost of new machine P̃ (ν, t)

ˆ ∞

t

e−H(t,τ)PK(τ) dτ − P̃ (t) = ξ(t) =

. Substituting this into the first order condition, we obtain

k(ν, t) = k̄

(
p̃(t)

P̃ (ν, t)

)−σ

.

Price (23). Maximizing (22) with respect to p(ν, t) gives

−σ(p(ν, t)− c)p̃(ν, t)−σ−1 + p̃(ν, t)−σ = 0

Using the definition of p̃(ν, t) and solving gives (23).

Technology (24). Plugging back the optimal price (23), the firm solves

max
A(ν,t)

1

σ

(
σ

σ − 1

)1−σ

P̃ (t)σ
(
c+

p̃e(t)

A(ν, t)

)1−σ

M(t)k̄ − A(ν, t)
1
θ

ϕ(t)

The first order condition is M(t)k̄P̃ (t)σ
(

σ
σ−1

)−σ (
c+ p̃e(t)

A(ν,t)

)−σ
p̃e(t)
A(ν,t)2 − 1

θϕ(t)A(ν, t)
1
θ−1 = 0. In a sym-

metric equilibrium P̃ (t) =
(

σ
σ−1

)σ (
c+ p̃e(t)

Ae(t)

)σ
and rearranging yields (24).
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B.3 Derivations Planner Problem

Derivation of social marginal value function j(k, t): I first collect all terms featuring h(k, t, ϵ) in

the social planner problem

λµ(k, t)h(k, t, ϵ)
(
j(k̄, t)− j(k, t)− λC(t)(k̄ − ϵ))

)
.

Substituting in the optimal replacement policy, and integrating over ϵ, we get

ˆ
λµ(k, t)h(k, t, ϵ)

(
j(k̄, t)− j(k, t)− λC(t)(k̄ − ϵ))

)
f(ϵ)dϵ = λµ(k, t)(J (k, t)− j(k, t)).

Next, we integrate
´∞
0

´ k̄
0
e−ρtj(k, t)

(
∂µ(k,t)
∂t − ∂k(δµ(k, t))

)
dkdt by parts with respect to k and t. First,

with respect to t, applying the transversality condition limt→∞ e−ρtj(k, t) and dropping the initial value

µ(k, 0), we have ˆ
e−ρtj(k, t)

∂µ(k, t)

∂t
dt =

ˆ
e−ρtµ(k, t)(ρj(k, t)− ∂tj(k, t))dt.

Second, with respect to k, we have

−
ˆ ∞

0

ˆ k̄

0

e−ρtj(k, t)∂k(δµ(k, t))dkdt =

ˆ ∞

0

e−ρt
[
j(k, t) δk µ(k, t)

]k̄
0
dt−
ˆ ∞

0

e−ρt
ˆ k̄

0

µ(k, t) δk ∂kj(k, t) dk dt.

The first term drops out because µ(0, t) = 0 and µ(k̄, t) is already pinned down by the replacement

policy h(k, t). Thus, we can collect the terms involving µ(k, t) in the constraint on the law of motion as

−µ(k, t)(ρj(k, t)− ∂tjt(k, t) + δk∂kj(k, t)).

Since the Gateaux derivative of Y with respect µ(k, t) is equal to δY (t)
δµ (k, t) = k ∂Y (t)

∂k , we get

δL
δµ

(k, t) = λC(t)k

(
e−γ(S(t)−S̄)

∂Y (t)

∂K(t)
− pe(t) + Λ(t)

A(k)

)
−ρj(k, t)+∂tj(k, t)−δk∂kj(k, t)+λ(J (k, t)−j(k, t)) = 0,

which yields (29). See Definition 3 in Nuño and Moll (2018) for further details on the Gateaux derivative

δL.

Comparing planner choice of Ae(t) (35) to competitive outcome (24)

Recall that energy efficiency in the competitive equilibrium outcome equals Ae(t) = ( θϕ(t)M(t)k̄p̃e(t)
w(t) )

θ
1+θ

where

M(t)p̃e(t) =M(t)k̄

ˆ ∞

t

e−δ(τ−t)−
´ τ
t
r(u)+λPR(k̄e−δ(u−t),u)dupe(τ)dτ.

The social planner setsAe(t) = Ae(t) =
[

θ
λL(t)

´∞
t
e−(ρ+δ)(τ−t) ϕ(t) λ

C(τ)
λC(t)

k̄ µ
(
e−δτ , τ

) (
pe(τ) + Λ(τ)

)
dτ
] θ

1+θ

To see that these are equivalent, first note

M(t) e−
´ τ
t
λPR(k̄e−δ(s−t),s)ds = δk̄e−δ(τ−t) µ(k̄e−δ(τ−t), τ),
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i.e. the mass of firms that replaced in period t, times the probability of survival until period τ is equal

to the cross-sectional share of firms with capital k̄e−δ(τ−t) in period τ . Second, we can integrate the

consumption Euler equation written in terms of marginal utility to obtain

e−ρ(τ−t)
λC(τ)

λC(t)
= e(−

´ τ
t
r(u) du).

This shows that the planner and machine users discount future energy costs at the same rate.

B.4 Derivations and Calibration Neoclassical Growth Model

Cobb-Douglas in K − E. In the Cobb-Douglas case, I assume equal energy shares between low and

high depreciation capital and modify the production function of Xm(t) in equation (9) to

Xm(t) = Em(t)αme
(
(Km(t)αLm(t)1−α

)1−αme
.

For the electricity sector, I assume that fossil fuel capital and energy are combined in Cobb-Douglas

fashion. In particular, define K̃e(f, t) = Ee(t)αeeKe(f, t)
1−αee and replace Ke(f, t) by K̃e(f, t) in equation

(12). I calibrate {αee, αme} = {0.605, 0.05} to match the same sector level energy shares.

Leontief in K − E. In this case, we retain the same nested production structure as in the main

model with energy demand equal to Ki(t)
Ai

where Ai is set equal to the steady state value implied by the

calibration in Table 3.

Capital supply. Across both variants, I assume households own capital and savings are determined

via the Euler equation (4). I allow for heterogeneous conversion rates from final output to capital to

match the same capital stocks as in main model. Denoting by Ri the gross return to capital, no arbitrage

requires

r(t) =
Ri(t)

ci
− δi.

Capital and energy demand. In the Cobb-Douglas case, capital demand is given by

∂Y (t)

∂Ki(t)
= Ri(t).

Energy demand satisfies

∂Y (t)

∂Ei(t)
= pe(t).

In the Leontief case, capital demand satisfies

∂Y (t)

∂Ki(t)
= Ri(t) + xi(t)

where xi(t) =
pe(t)
Ai

for manufacturing capital and fossil fuel using electricity capital.
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C Numerical Methods

In this appendix, I provide an overview of the numerical methods used to solve and calibrate the model.

Time dimension: Instead of choosing an equally spaced grid of time points and using finite differences

to compute time-derivaties, I follow the spectral approach outlined in Trefethen (2000) and applied in

economics by Hémous et al. (2023) and Schesch (2024). I guess all endogenous variables on a grid

of 19 Chebyshev nodes and compute time derivatives using the dense differentiation matrix defined in

Trefethen (2000). To compute transitional dynamics, I assume the economy has a time horizon of 1000

years and assume convergence to a new steady state after 500 years. I implement this idea by setting

all time-derivatives after 500 years to zero. To account for the non-stationarity of the climate system, I

hold damages fixed at the level of damages reached 400 years into the transition as is standard in the

numerical computation of integrated assessment models..

Solution of value function. Given k̄ = 1, we choose an equally spaced grid points k(i) ∈ [0, 1] with

40 grid points. The drift Vk is approximated using finite differences. The drift in the time dimension is

approximated by applying the Chebyshev differentiation matrix D to the value function at each point k.

After these discretization steps, the value function (17) becomes a non-linear system of equations with

unknows V (k, t). The system can quickly be solved using a trust-region solver.

Solution of the distribution. I solve the transitional dynamics on a grid of Chebyshev nodes

t1 . . . tM and use the Chebyshev differentiation matrix D to compute time derivatives. This allows me to

write the distribution µ(k, t) on the resulting two-dimensional grid as

Djµ(ki, t) = δµ(ki, tj)− δki
µ(ki, tj) + µ(ki−1, tj)

dk
− λPR(ki, tj)µ(ki, tj)

where Dj is the jth row of the differentiation matrix D. This is a linear system in µ(k, t) that can be

solved given an initial condition.

Numerical solution of the equilibrium. To solve the equilibrium, I take a guess of the following

endogenous variables. The energy efficiency of the latest vintage in each sector Ae(t), the discounted

energy price p̃e(t), the price of capital in each sector PK(t), aggregate consumption C(t) and the amount

of labor in the electricity sector Le(t). The solution algorithm then proceeds as follows

1. Given the path of consumption C(t) and the differentiation matrix D, we can compute the implied

interest rate r(t) from (4)

2. Given paths for Ae(t) and Le(t), use the law of motion for research productivity (26) to compute

labor demand for researchers in every period and then the labor market clearing constraint to

compute labor outside of the research and the electricity sector

3. In each sector

(a) Use guess of p̃e(t) and Ae(t) to compute investment cost P (t) in (25)

(b) Use guess of PK(t) to compute profits in equation (22)

(c) Given r(t), P (t), π(k,A(k), t) solve the HJB (17) and the distribution µ(k, t) (19) numerically
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(d) Compute p̃e(t) as implied by the replacement probability based on the HJB computed in the

previous step

(e) Compute the implied price of capital PK(t), given the level of capital implied by µ(k, t) and

guess for allocation of labor across sector

(f) Compute the implied level of energy efficiency Ae(t) from equation (24)

4. Compute the implied level of consumption from the resource constraint (27)

5. Compute the implied level of Le(t) from equalization of wages across sectors

I define function residuals by comparing the guess of all endogenous variables to their implied values

and feed these residuals to a numerical solver. To find a fixed-point of this system of equations, I iterate

on the initial guess using Anderson Acceleration.
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D Additional Quantitative Results

D.1 Larger Spillovers

To generate a larger long-run elasticity of substitution between capital and energy, I proceed as follows.

Using equation (26) to solve for steady state productivity as ϕ = Ae

δA
and combining with equation (24),

we can solve for equilibrium energy efficiency as

Ae =

(
θMk̄p̃e
wγ

)θ
.

The partial equilibrium elasticity with respect to a permanent change in energy prices is θ. To generate

a larger elasticity of energy efficiency Ae with respect to energy prices or carbon taxes, I modify equation

(26) so that it generates a partial equilibrium elasticity twice as large, i.e. 2θ:

Ae =

(
θMk̄p̃e
wγ

)2θ

.

This requires changing the the law of motion to (26) = −δA + Axe where x = 1 + 1
2θ . I then recalibrate

the model to the same target moments.

D.2 Further Results on Optimal Policy
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(a) Energy efficiency of new machine Ae(t) (b) Average energy efficiency, Āe(t)

(c) Investment (d) Consumption and GDP

Figure D11: Transition Dynamics After Permanent 250 Percent Increase In The Price Of Energy.

Notes. This figure presents simulated responses of sectoral and macroeconomic aggregates in response to a
permanent 250 percent increase in the exogenous price of energy pe(t). The y-axis measures responses relative to
the baseline value of the variable prior to the shock. The simulations do not account for feedback from emissions
to climate damages. Relative 6, this figure presents simulation results for larger spillovers.

(a) Āe(t) in durable manufacturing subsector (b) Aggregate Energy Demand

Figure D12: Technology and Energy Demand Comparisons

Notes. This figure compares the response of average energy efficiency and aggregate energy demand across
models. The dotted line corresponds to a model with with larger spillovers as described in Section D.
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Figure D13: Energy Demand Across Models

Notes. This figure shows the response of energy demand in the Cobb-Douglas case in response to the optimal carbon tax as
in Figure 9d and compares to energy demand in the main model under a constant carbon tax of $600 per ton of CO2. The
constant carbon tax is set so that the main model displays roughly the same decline in energy demand 25 years into the
transition as the Cobb-Douglas case.

(a) Investment Response to Golosov et al. (2014) Tax (b) Investment Response to $600 Tax

Figure D14: Investment esponse

Notes. The left hand side panel of this figure shows the response of investment to the optimal carbon tax for
constant marginal damages of about $150 as shown by the black line in Figure 9c. The right hand side shows the
response of investment to an ad-hoc tax of $600, chosen to achieve a reduction in emissions of about 45% within
25 years.
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Figure D15: Carbon Taxes With Convex Damages

Notes. This figure shows optimal carbon taxes for a damage function exp
(
−ψ(S(t)− S̄)2

)
where ψ is recalibrated so the

SCC at t = 0 matches the SCC implied by my calibration of the baseline model.
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