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Abstract

How large is geographic leakage resulting from place-based environmental policy?
We study this question in the context of the landmark US Clean Air Act Amendments.
Our paper makes three primary contributions. First, using modern event-study tech-
niques and confidential US Census data, we revisit seminal results characterizing the
effects of this environmental regulation on directly regulated plants and industries.
Second, we extend prior research by quantifying leakage to unregulated regions and
identifying multi-unit firm networks as a key conduit for this leakage. Third, we in-
tegrate these findings into an industry spatial equilibrium model that captures both
within-firm and cross-location leakage. The model quantifies the economic cost of the
regulation, evaluates the contribution of multi-unit firms to regional leakage, and high-
lights the role of the Clean Air Act in redistributing industrial production across the
US. Our analysis reveals that approximately 40% of the geographic leakage we observe
is driven by within-firm reallocation, highlighting the critical role of multi-unit firms
in shifting economic activity across regions.
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1 Introduction

A central question in the study of environmental regulation is the degree to which regulated
economic activity is shifted to unregulated domains. Leakage may occur when policies target
establishments based on size or location, or impact only a subset of plants within a firm.
Failing to account for leakage may bias estimates of the economic effects of important policies
and misrepresent their distributional consequences.

This paper studies the direct and leakage effects of regulations in the context of a land-
mark environmental legislation: the Clean Air Act. The policy restricts manufacturing ac-
tivity in counties that exceed the National Ambient Air Quality Standard, a federal pollution
standard intended to protect human health.

Four main challenges have prevented prior studies from providing a comprehensive anal-
ysis of the direct and indirect effects of environmental regulation. First, the presence of
leakage complicates the estimation of treatment effects.! Second, command and control
regulations often disincentivize investment, but do not target existing operations. As such,
focusing on a shorter time horizon produce results that fail to capture longer-run extensive
margin responses such as entry and exit. Third, to properly measure leakage effects, it is
crucial to contend with the fact that a significant fraction of industrial output occurs in
plants that are part of multi-unit firms and may therefore more easily be able to shift pro-
duction to unregulated regions. Finally, studies of leakage typically face omitted variable
bias because differences in environmental regulation are often correlated with other charac-
teristics of regulated jurisdictions. In particular, policy endogeneity can lead researchers to
incorrectly conclude that environmental regulation does not shift the location of industrial
activity (Copeland, Shapiro, and Taylor, 2022).

In this paper, we overcome these challenges by combining new empirical evidence with
an industry spatial equilibrium model that features intra-national trade and multi-unit pro-
duction. We first use confidential plant- and firm-level data from the US Census Bureau
to provide new empirical evidence of how plants and firms responded to the Clean Air Act

over a 20 year period. To capture important long-run adjustments, such as plant exit and

'Indeed, the first generation of papers studying the Clean Air Act did not directly address leakage effects
(e.g., Becker and Henderson, 2000; Greenstone, 2002).



reallocation of activity within firms, we provide new event-study analyses that capture plant
and firms responses to the policy. By linking regulated plants to unregulated sister plants in
the same firm, our analyses capture the potential for within-firm leakage, a critical margin
given that multi-unit firms were responsible for 80% of the output of regulated industries
during this period (Dunne, Roberts, and Samuelson, 1988). Using event-studies, we find
that, relative to unregulated plants, those in areas subject to regulation experience declines
in employment and sales of 26% and 30%, respectively. Our analyses also document that
a significant fraction of these changes is driven by extensive margin responses, highlighting
the importance of analyses that incorporate entry and exit decisions. We then show that
multi-unit firms respond to the policy by increasing their economic activity in unregulated
plants. To complement these new plant- and firm-level results, we provide new estimates of
the direct and geographic leakage effects at the county-level. These results show that, over a
20 year period, employment in regulated areas decreased by 25.2%, relative to non-regulated
areas. At the same time, areas that were geographically closer to highly regulated regions
experienced positive spillover effects and saw increases in employment.

While these new empirical results contribute to our understanding of the effects of this
important regulation, we are careful to interpret them as relative changes that capture the
effects of the Clean Air Act on regulated and unregulated plants. To separately capture
the direct and indirect effects of the policy and quantify its aggregate impact, we build an
equilibrium model that quantifies geographic leakage through intra-national trade as well as
through ownership networks of multi-unit firms. The calibrated model shows that the regu-
lation was quantitatively equivalent to a 5% reduction in the local productivity of regulated
areas. These local productivity shocks impact both regulated and non-regulated areas: in-
deed, a decomposition of the differences-in-differences estimates implied by the model shows
that 55% of the overall effects are driven by declines in economic activity in regulated areas
and 45% by increases in the economic activity of non-regulated areas. Our analyses also show
that a model with multi-unit firms and within-firm substitution of production is crucial to
matching the estimated within-firm and cross-location spillovers. The model characterizes
the effects of the regulation on the geographic spread of polluting industries, with the reg-

ulation explaining a third of the relative decline in geographic concentration between 1963



and 1987. Finally, the model quantifies the aggregate effects of the regulation as a 1.3%
decline in the production of polluting industries.

We develop these results in two steps. We first use data from the Census of Manufactures
and an event-study approach to revisit seminal estimates of the effects of the Clean Air Act
on regulated plants using data for a longer horizon. Relative to unregulated plants, plants in
areas subject to the regulation experience a 30% decline in plant output over 20 years. We
find similar declines in other measures of economic activity, such as employment and energy
use, and we show that exit among plants in multi-unit firms is a key driver of these results.
To measure within-firm leakage, we then compare regulated firms that differ in their share of
pre-regulation employment subject to the regulation. Relative to firms with low exposure,
those with higher exposure see increases in the output of unregulated plants in their firm
network.

We complement our evidence of within-firm reallocation with new estimates of the geo-
graphic leakage effects of the regulation using publicly-available County Business Patterns
data (Eckert et al., 2020). To measure county-level indirect exposure, we calculate how much
regulated employment each county is surrounded by, weighing surrounding counties inversely
according to geographic distance (Adao, Arkolakis, and Esposito, 2019). Our estimates im-
ply that counties at the 75th percentile of the exposure distribution see a 3% increase in
employment relative to counties at the 25th percentile.

In a second step, we build an industry spatial equilibrium model with detailed geographic
resolution, multi-plant production, and intra-national trade. The model guides our interpre-
tation of our empirical difference-in-difference estimates and evaluates the aggregate output
loss attributable to the Clean Air Act. Through the lens of our calibrated model, rational-
izing the relative employment decline in regulated areas requires a 5% productivity decline
in those locations, comparable to that estimated in Greenstone, List, and Syverson (2012).
As evidence that the model captures the economic forces at play, we show that standard
values of the within-firm elasticity of substitution (Tintelnot, 2017; Head and Mayer, 2019)
perform remarkably well at reproducing our (untargeted) spillover estimates.

Using the model, we disentangle the direct effects captured by the difference-in-difference

coefficients into the actual impacts on regulated areas and the leakage effects on unregulated



ones. Approximately half of the observed reduction in employment in regulated areas, com-
pared to unregulated areas, is attributable to leakage effects on the unregulated locations.
Reallocation within multi-unit firms is a crucial driver of these effects. A model without
multi-unit plants predicts that the employment increase in regulated areas is roughly 40%
smaller. These reallocation effects also feed into changes in regional specialization. Between
1967 and 1987, manufacturing activity became less spatially concentrated. Our model sug-
gests the Clean Air Act accounted for about a third of that effect, which demonstrates that
environmental regulations can be a clear determinant of comparative advantage, a result
that has been hard to demonstrate using cross-country data.

The rest of the paper is organized as follows. Section 2 places our results in the context
of the literature. Section 3 provides institutional background on the Clean Air Act Amend-
ments. Section 4 develops a simple, two-location model with intra-national trade and multi-
unit firm production that motivates the challenges of interpreting difference-in-differences
estimates in spatial equilibrium. Section 5 describes our data and empirical results. Section
6 generalizes and implements our quantitative model. Section 7 uses the model to evaluate

the direct, indirect, and aggregate effects of the Clean Air Act. Section 8 concludes.

2 Related Literature

To set the stage, we revisit seminal papers in the literature on the economic effects of the 1970
Clean Air Act such as Greenstone (2002) and Becker and Henderson (2000).> Consistent
with the findings in this literature, we estimate that violations of the pollution standard
increase exit rates, particularly among very large establishments, and trigger declines in sales,
employment and energy use. We make two contributions to this literature. First, we provide
new evidence on the long-run effects of the policy. Clean Air Act (CAA) regulations may
not immediately require incumbents to downsize, either because of grandfathering or modest
cost of required control equipment. Over time, some of the provisions of the CAA become
more binding and put regulated plants at a long-run disadvantage relative to unregulated

plants. One such provision is the New Source Review that severely limits plants in their

2Similar to these studies, our paper only focuses on the manufacturing sector. Clay et al. (2021) study
the effects 1970s nonattainment on electricity producers.



ability to carry out major expansions. Our event study methodology allows us to capture
these long-run responses, and supports the hypothesis that the negative effects of regulation
accumulate over time.®> Taken at face value, the relative employment declines in polluting
industries imply a job loss of more than 200 thousand, around four times larger than implied
by Greenstone (2002) estimates for particulate matter regulation.” Second, we empirically
test for leakage within firms and across counties triggered by the policy.

Our findings of within firm leakage complement recent work that studies these leakage
in response to environmental policy (Cui et al., 2023; Gibson, 2019; Hanna, 2010), weather
shocks (Castro-Vincenzi, 2023; Acharya, Bhardwaj, and Tomunen, 2023) and local produc-
tivity improvements (Giroud et al., 2021). An important take-away from our results is that
this process of reallocation may take a long time to unfold. Thus, we caution against using
short panels if the goal is to estimate the full extent of within firm reallocation. Relative
to these papers, we also present evidence for gravity-based leakage to nearby unregulated
counties. Spatial leakage within the US may be an important consideration for designing
and evaluating environmental policies that differ across states (Fowlie, 2009).

Accounting for leakage is central for estimating the aggregate effects of the policy. A
large literature uses quantitative general equilibrium models to assess positive and norma-
tive aspects of environmental policy (Golosov et al., 2014; Hafstead and Williams, 2018;
Shapiro and Walker, 2018; Campolmi et al., 2024). Papers in this literature typically study
environmental policy at the national level, while we evaluate the distortions that arise in
spatial equilibrium, similar to the study of state tax differences by Fajgelbaum et al. (2019).
We explicitly discipline our model with credible reduced form estimates of the micro effects
of environmental policy. Closely related to our quantitative analysis, Hollingsworth et al.
(2022) also study the effects of the Clean Air Act in spatial equilibrium. Their paper high-
lights the importance of pollution transport for estimating the aggregate benefits of reduced

pollution in nonattainment counties.” Relative to their work, we provide a detailed empirical

3Walker (2013) analyzes important long-run labour market outcomes among workers employed by regu-
lated plants.

4These differences arise because Greenstone’s difference in difference estimates also reflect substantially
smaller short-run effects, as well as his assumption that counties are no longer regulated.

SHollingsworth et al. (2022) emphasize that unregulated counties can benefit from regulation through
reduced pollution transport. We empirically estimate no pollution leakage to unregulated counties, consistent
with economic reallocation offsetting the effects of reduced transport.



assessment of economic leakage and interpret the empirical results within a spatial equilib-
rium model of multi-unit firm production. Our paper is also related to empirical work on
the pollution haven hypothesis as surveyed in Copeland, Shapiro, and Taylor (2022). While
the evidence in that literature is mixed, our study of intra-national relocation overcomes
endogeneity issues that arise in cross-country studies. Since production is likely more mobile
within than across countries, our estimates may provide a credible upper bound on pollution

haven effects.

3 Institutional Setting

In this section, we provide institutional details behind the environmental regulation that

forms the basis of our identification strategy and modeling approach.

3.1 Clean Air Act

The Clean Air Act was the first federal legislation regulating emissions of air pollutants in
the United States. While it has undergone changes since its passage, the framework that
was put in place by Congress in the 1970’s remains intact today.® Following the Earth Day
Demonstrations in April of 1970, Congress moved quickly to pass federal, enforceable regula-
tions of air emissions. The 1970 Clean Air Act Amendments established the Environmental
Protection Agency (EPA) and granted them considerable authority to regulate emissions
across stationary and non-stationary sources. The backbone of the 1970 CAAA, was the
creation of the National Ambient Air Quality Standards (NAAQS). The law gave the EPA
authority to set air quality standards for pollutants considered harmful to public health and
the environment. The NAAQS set pollution thresholds for key “criteria” air pollutants and
regions of the country with pollution levels above these thresholds were designated as “nonat-
tainment.” Regions of the country whose pollution levels were below the threshold would be
designated as in attainment. The 1970 CAAA required States to design and enforce State
Implementation Plans (SIPs) by 1972 that would reduce emissions in nonattainment regions

and bring these regions’ pollution levels into compliance with the new federally imposed air

6The original Clean Air Act passed in 1963, but contained only broad, non-specific goals and no enforce-
ment mechanisms. As a result, between 1963 and 1970, the act was viewed as toothless and “a complete
failure” (Melnick, 1983).



quality standards. In practice, most states calculated the total estimated emissions from all
stationary sources within each nonattainment area and then divided this figure by an esti-
mate of the maximum emissions level that would allow to achieve attainment status. Plants
were then mandated to cut emissions in accordance with this ratio (Roberts and Farrell,
1978).

While states had some leeway to regulate emitters, the EPA and the 1977 CAAA for-
malized a set of rules which required polluting establishments in nonattainment regions to
comply with more stringent regulations than those in attainment regions. In particular, in
order for a plant to receive an operating permit in a nonattainment region, it had to achieve
the Lowest Available Emissions Rate (LAER). This provision of the CAAA required them to
install capital that ensured they would achieve the emissions rate of the cleanest plant in the
industry. Importantly, this standard had to be implemented irrespective of cost, requiring
firms to make expensive upgrades to their facilities. Additionally, as part of the Nonattain-
ment New Source Review, new and modified sources in nonattainment regions were required
to obtain offsets from other local emitters before any expansion or modification would be
allowed (Shapiro and Walker, 2023). Finally, being located in a nonattainment region meant
that plants were now subject to scrutiny from regulators and the public. Facilities wishing
to modify or grow were required to undergo an extended period of public and regulatory in-
put. Polluting establishments in attainment regions and particularly those without emissions
monitors, received far less scrutiny from regulators.

More lax rules were put in place for plants in attainment counties. “Major Sources” in
attainment regions were subject to the less stringent Prevention of Significant Deterioration
(PSD) requirements which took costs and economic growth into consideration and did not
require public input for new and modified sources. However, even the definition of a major
source varied by attainment status. Generally, plants in nonattainment regions were defined
as major source emitters if they produced more than 100 tons per year of a pollutant. Plants
in attainment counties could pollute up to 250 tons per year before being classified as a major
source.

Together, the introduction of the 1970, 1977 Clean Air Act Amendments, and the es-

tablishment of nonattainment standards, marked a significant turning point for industrial



polluters, imposing stringent regulatory measures that were unprecedented at the time.

3.2 Details of Treatment Designation

The geographic variation we exploit in our analysis is derived from the differential change
in regulatory stringency between plants in attainment and nonattainment regions follow-
ing the passage of the 1970 CAAA. Upon its passage, the EPA collected air quality data
from pollution monitors around the country to determine which regions would be designated
as nonattainment for the criteria air pollutants. By the beginning of 1972, the EPA had
developed a designation. The EPA did not publish records of county nonattainment desig-
nation until 1978. As a result, researchers use monitor data from the early 1970’s together
with the published pollution thresholds to impute which counties were originally placed into
nonattainment (see Sanders and Stoecker (2015) and Isen, Rossin-Slater, and Walker (2017)
among others). Researchers have differed in the details of imputation, but recent work has
focused on attainment status of Total Suspend Particulates, for which the monitor network
is most complete in the early 1970’s when attainment status was first being determined
(Cropper et al., 2023; Isen, Rossin-Slater, and Walker, 2017; Sanders and Stoecker, 2015).”
As a result, our main analysis defines a county as treated if it is designated as nonattainment
for at least TSP. When using available data for monitors of other pollutants we find that,
unsurprisingly, nonattainment status is highly correlated across pollutants. We identify only
25 counties which fall above the threshold for a non-TSP pollutant and would be defined as
in attainment for TSP.® From these readings, 274 counties whose 1971/1972 monitor data
exceeded the CAAA’s Total Suspended Particulates threshold are defined as treated.’

We take these regulatory designations as fixed for the period 1972 to 1987. An alternative
considered in Greenstone (2002) is to assume plants are no longer regulated once the county

achieves the primary standard. One advantage of taking regulatory designations as fixed is

“In 1972, TSP monitors covered 1,059 counties, relative to 508 for SO2, 156 for O3 and 137 for CO.

8To create a clean control group we drop plants in these 25 counties from our sample. Given Census
disclosure rules we currently do not release results for other treatment definitions but we are able to perform
a number of robustness checks with other treatment definitions using publicly available County Business
Patterns data.

9A second reason to focus on TSP, apart from the sparse monitor data of other pollutants, is that the CAA
officially targeted larger Air Quality Control Regions (AQCR) in the early 1970s (Murphy, 2017; Cropper
et al., 2023). For TSP, it is plausible that regulators focused on the most polluted counties within AQCRs
since TSP pollution remains highly concentrated around its source (Auffhammer, Bento, and Lowe, 2009).



that it allows us to estimate the dynamic effects of nonattainment. Long-run effects may
be important because some aspects of the regulation such as the New Source Review can
affect firms even if they are no longer directly targeted by regulators. If firms stop investing
while regulated, the effect on output may remain visible even if the county has fallen back
into attainment. An additional consideration is that regulatory differences may in fact be
permanent. Even if pollution readings fall below the initial threshold, a county can still be
in violation for NAAQS standards which were lowered in subsequent years. The thresholds
used to determine attainment status have been revised and lowered almost every five years.
Plants in initially more polluted nonattainment areas may expect future tightening of the
NAAQS to fall on them and thus not dramatically change their behavior.

Following Greenstone (2002) and Greenstone, List, and Syverson (2012), our baseline
results analyze industries that are deemed as heavy polluters. We provide additional details

of the selected industries in Section 5.1.

4 Theoretical Motivation

To build intuition about the economic effects of partial regulation in the presence of multi-
plant production, we begin with a simple two-region model. This simple case shows that, in
spatial equilibrium, comparisons between firm outcomes across attainment and nonattain-
ment regions do not only capture the direct effect on regulated firms. This is because firms
in attainment areas benefit from an increase in competitiveness. In addition, local market
outcomes, such as production and employment, depend on equilibrium prices in both attain-
ment and nonattainment areas. Within attainment regions, the model predicts an increase
in employment and sales among unregulated plants exposed to the regulation through a reg-
ulated sister plant. This intrafirm leakage effect arises whenever the elasticity of substitution
across plants within firms 6 is greater than the elasticity of substitution across firms n — 1.
Proofs of the results are in Appendix C.

Set-up. There are two ex-ante symmetric locations. Each location j has a unit mass of
potential entrants j with firm productivity ¢; ~ G;. To become active, a potential entrant
has to pay a fixed cost f;.

Upon entry, firms produce a unique variety using labor. We focus on the product market



equilibrium and fix the wage w; = 1 in both locations. To serve the foreign market, firms
can trade to the other location and incur a constant iceberg trade cost 7 > 1. There is no
additional fixed cost of exporting. Firms can also decide to open a plant in the other location
at fixed cost fi.

Following Tintelnot (2017), we assume that sales are comprised of a unit mass of ship-
ments. Each plant receives a continuum of cost draws from Frechet distribution with a
region-specific location parameter 7 and common scale 6. The firm chooses the lowest cost

plant for each shipment. For a single plant firm located in j, marginal cost of serving market
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i.e. the MU firm achieves lower marginal cost by exploiting comparative advantage within
the firm.!"

Combined with the presence of fixed costs of entry and MU production, the model pro-
duces intuitive sorting. Let Q_ﬁj be the productivity of a firm indifferent between entry and
inactive and gzzﬁj the productivity of a firm indifferent between single-unit production and
multi-unit production. Given CES-monopolistic competition, this set-up implies: ¢; < QZSj.

Effects of Environmental Regulation. We model nonattainment as a negative,
location-specific productivity shock dIn7T; < 0 to an ex-ante symmetric industry equilib-
rium.!! Productivity in the attainment region j’ is unaffected. The following results charac-

terize the effects of this shock to a first-order approximation.

10We provide a more detailed and general derivation of these cost functions in Section 6.1.
1 This equilibrium is defined by a pair of ideal price indices P; and Pj that are consistent with optimal
location and production choices of firms in j and j'.

10



Result 1. The effect of regulation on revenue r and labor demand [ of single and multi-

unit plants active in j are given by

1 1=n
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+[7(n—1)+ (1 —7)0] dlog T;
>0
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where 7 = (HT_Q) —l—(ﬁ) < 1.

This result shows that the direct effect of regulation induced decline in productivity -
holding prices fixed - is a decline in plant sales and employment.'? For single-unit plants,
the direct effect is proportional to the cross-firm elasticity of substitution. For multi-unit
plants, it depends on a convex combination of the within and across firm elasticity. The
fractions involving trade costs 7 are exposure shares corresponding to the share of plant
revenue stemming from sales in j and j’, respectively.

Result 2. The effect of regulation on revenue and labor demand of plants in the unreg-

ulated region j’ is given by

1-n 1
SU _ SU _ 7
dlogr;” =dlogly” = (n—1) (mdlong + mdlog Pj,)
-0
MU __ MU __ T
dlogrj, = dloglj, =(n—-1) (1 +7__0dlong + ] +T_9dlong,)

+[(n—1—=06)(1 —7)]dlogT;.

Single unit plants in j’ are only affected by the regulation through the effects of the
regulation on the equilibrium price indices P; and Pj. For multi-unit plants, there is an
additional effect: if § > n — 1, regulation in j leads to an increase in production of firms in
j'. MU firms use their plant in j’ to satisfy demand previously met through shipments from

the plant in j. This effect is especially pronounced when trade costs 7 are small.

12With labor as the only input factor and CES-monopolistic competition, labor and sales differ only up
to a constant.
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Characterizing the full effect of regulation within this model requires us to determine the
effect on prices. The first step in this analysis is to establish the effects of regulation on
entry and exit.

Result 3: The effects of nonattainment on entry and location choice are equal in mag-

nitude and opposite in sign:
dang] = —dangj/ > (0 and dlngj = —dh’lgj/ < 0.

After the regulation, firms exit the nonattainment region, i.e., the productivity threshold for
entry increases: dIn 95j > (0. However, this effect is offset by entry into the attainment region,
where the entry threshold decreases by an equal amount. The entry effect arises because the
attainment region gains in relative competitiveness. Additionally, firms head-quartered in j
are more likely to open a second plant if § > n — 1, i.e., the productivity threshold defining
MU status decreases: dln gzzﬁj < 0. The restriction > n — 1 guarantees that the profits of
single-unit firms are more negatively affected by a productivity decline than those of multi-
unit firms.'? At the same time, exporting becomes more attractive for firms headquartered
in 7', where the multi-unit threshold increases. Given the assumption of symmetry across
locations, these results also imply that the overall number of active firms remains constant.
Nonetheless, as the following result shows, the effects of the regulation on location choices
amplifies the overall effect of the regulation on the price index in the regulated area FP;.

Result 4. The effect of nonattainment on the price index is given by
dlnPj=—-AxdInT; and dlnPjy =—(1—-A)dInT},

where A > (1 — Stpade) > % is a function of model parameters.

In a setting without entry and location choices, the first-order effect of a negative produc-
tivity shock on P; is given by share of consumption that was initially produced in j, which
we denote by 1 — Sp,qa4e- Entry and exit decisions amplify this effect because the number of
firms producing in j falls. The offsetting entry in 5’ is less valuable for consumers in j who

are separated from these firms by trade frictions. Prices in location j’ also increase whenever

13Whenever § > n — 1, sales are more substitutable within the firm, so firms can partially evade the
productivity loss of regulation by selecting into multi-unit production.
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A < 1. This holds when the market share of marginal firms is sufficiently small so that the
price index is not too elastic with respect to the behavior of these firms.
Result 5. Suppose A < 1. Then a difference-in-difference comparison overstates the

effects of nonattainment on local labor demand:
dInL;| < |dInL; —dIn Ly|.

The response of local labor demand dIn L; reflects the direct effect of the negative pro-
ductivity shock on surviving firms and exit, partially offset by the increase in the price index
in 7. A similar equilibrium adjustment leads to entry in the unregulated location j'. Ad-
ditionally, the within firm shift in economic activity raises labor demand among plants in
multi-unit firms. Together, these effects imply an increase in labor demand dInLj; > 0.
Thus, comparing a regulated area to an unregulated identifies the regulation’s relative effect
on labor demand. However, it overstates employment losses in the regulated area because
the relative price increase is smaller than the absolute price increase in the nonattainment
area. Additionally, it double-counts entry and exit effects as well as within-firm relocation.

With knowledge of model parameters, such as A and the price elasticity of product
demand, it is possible to use this simple model to decompose differences-in-differences esti-
mates into the effects on attainment and nonattainment areas (see Appendix C). While this
model delivers useful insights, the mapping between model parameters and reduced-form ef-
fects depends on an unrealistic assumption of symmetry, misses important differences in the
economic geography of the US, and does not account for how the policy targeted different
locations. We will further address these important details in our quantitative analysis of

section 6.1.

5 Empirical Results
5.1 Sources of US Manufacturing Data

This section describes the main data sources we use in our empirical analyses of the 1970’s
CAAA on plant-, firm- and county-level outcomes.

Plant-level data. The primary dataset we rely on is the Census of Manufactures (CM).
The CM is a census of all US manufacturing establishments in the United States. The

13



first year available to researchers is 1963. Starting in 1967, Census began performing the
survey quinquennially in years ending in 2 and 7. Our baseline sample period consists of all
CM years from 1963 to 1987. The CM provides plant-level data on the baseline measures of
output (sales) and inputs (labor, energy) that we report. To track plants and firms across the
years covered in our study, we employ the Longitudinal Business Database (LBD). The LBD
has been carefully constructed by Census to ensure consistency across years for both plant
and firm identifiers (Chow et al., 2021). The consistent identifiers allow us to observe when
plants shut down. The firm identifier allows us to identify all plants owned by a common
firm which allows us to calculate firm-level measures of our key variables and identify within
firm reallocation across plants and geography.

We focus on the industries Greenstone (2002) labels as major emitters of Total Suspended
Particulates. The industry groups are “Lumber and Wood Products”, “Pulp and Paper”,
“Stone, Clay, Glass, and Concrete” and “Iron and Steel”.!" Becker and Henderson (2000),
Greenstone (2002) and Greenstone, List, and Syverson (2012) argue that regulators target
these pollution-intensive industries to bring counties back into attainment. To estimate the
effects of the regulation across all manufacturing industries, we rely on public CBP data as
described below.

County-Sector Employment. To estimate county-level impacts, we rely on county by
2-digit SIC sector employment data from the County Business Pattern (CBP) for the period
1967-1987. We use the data provided by Eckert et al. (2020) and Eckert et al. (2022)."° Since
we use the CBP across a time period where coverage expands sharply, we limit ourselves to
county-sector cells with positive employment throughout the period 1967-1987.'% This also
limits the influence of very small county-sector cells on our estimates. Employment changes

in these cells may be unduly influenced by reporting changes, such as whether multi-unit

4For our plant-level estimates, our sample consists only of plants in exactly the industries listed as major
emitters of TSP in Table A2 in Greenstone (2002). At the county-level, our definition of major emitter is
slightly broader in that we include all 3-digit industries that fall in those industry groups, some of which
Greenstone excludes.

5Eckert et al. (2022) digitize the CBP for years prior to 1974 and Eckert et al. (2020) develop a method-
ology to impute missing employment cells.

6Figure 1 in Eckert et al. (2022) shows a significant jump in the number of available observations within
this period. Most of these additional observations are insignificant in terms of their contribution to overall
employment. We obtain very similar effects in terms of size and significance when we estimate the effects of
nonattainment on the full panel.
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firms report all their employment to the location of the headquarter establishment.

5.2 Effect of Nonattainment on Regulated Firms

We start by revisiting the effects of 1970s CAAA regulations on plant-level outcomes. Our
estimation sample consists of all plants that operate in polluting industries. We focus on the
effects on incumbent plants by dropping plants not yet active in 1963. We estimate Poisson

Pseudo-Maximum Likelihood (PPML) models of the form

1987

Yi(e,j)t = XD ( Z Treat. x 1{t = 7}B; + p; + pjr + ,ust> €i(c,),t (1)
T=1963,r£1967

where ;. ;) refers to outcome y (employment, sales) of plant 7 in county ¢ and industry j.
We impute ;. jy+ = 0 for all years after the plant exits, allowing us to account for regulation
induced plant exit.

Our estimate is derived from comparing plants in initially regulated areas, Treat. = 1,
to those in unregulated areas. To ensure our control group is not differentially affected
by other CAA regulations, we drop a small number of counties that are in nonattainment
for pollutants other than TSP, but in attainment for TSP. Given our focus on within-firm
leakage, we additionally exclude unregulated plants whose parent firm operates regulated
plants in the same industry. A primary concern with equation (1) is that regulation affects
heavily polluted areas, with higher population density and manufacturing employment. To
ensure our estimates are not driven by these differences, we include plant, industry-by-year,
state-by-year, initial size decile-by-year and initial labor productivity decile-by-year fixed
effects. Standard errors are clustered at the county-level.

Figure 1 shows results for employment and sales. Prior to the passage of the CAA,
treatment and control groups trend similarly. After the regulation, employment and sales of
regulated plants fall relative to unregulated plants. The long-run effect in 1987 amounts to
a 26% decline in employment and a 30% decline in sales.'”

Next, we study whether these large relative effects reflect extensive margin adjustments

through exit or downsizing along the intensive margin. Using the same sample of incumbent

17Since we use PPML to estimate equation (1), these effects should be interpreted as percent change in
the mean and not the mean percent change (Chen and Roth, 2023).
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plants, we estimate a linear probability model for plant exit:
]I[exitedi(c’j%t] = Z TT@GtC X 1{t = 7'}57- + 50X¢71963 + Mt -+ st + €i(c,j),t (2)

Intuitively, we compare exit rates between plants in regulated and unregulated areas, con-
trolling for state and industry-by-year fixed effects. One important difference between the
regression models (1) and (2) is that it is not possible to control for time-invariant differ-
ences in the propensity to exit via unit fixed effects. To address this issue, we control for
plant-level employment in 1963, X 1963, when all plants in our sample were active and once
again control for initial labor productivity decile-by-year fixed effects..

Figure 2 reports results of a version of the regression model (2) that adds a multiunit
(MU) plant indicator interaction term. While there is no initial difference in the propensity
to exit among either group of plants, regulated MU plants are 15 percentage points more
likely to have exited the industry by 1987. Regulation does not affect the likelihood of exit
for single-unit plants. This differential response by firm type is consistent with MU firms
shutting down production at regulated plants and shifting it to unregulated sister plants.

The persistence and size of the effects in Figures 1 and 2 suggest that nonattainment
significantly restricts plants’ growth trajectory, consistent with regulation becoming more
stringent with the passing of the 1970 and 1977 amendments to the Clean Air Act. While
we have made efforts to create a “cleaner” control group, the estimates provided here should
still be interpreted as evidence of a relative effect of nonattainment. According to the
conceptual framework laid out in Section 4, the estimated declines in employment and sales
likely overstate the effect of the policy on plants in regulated counties. This bias arises in our
context because economic activity likely reallocates towards attainment counties, violating
the stable unit treatment value assumption (SUTVA).

To study this reallocation, we test whether multi-unit firms offset declines among regu-
lated plants by increasing production at their unregulated plants. We consider a sample of
firms active in both regulated and unregulated counties, as measured by the location of their
plants prior to the policy. We use PPML to estimate the following specification

1987

Yri)e = eXp ( Y. Treaty x 1{t = 7}B, + e + Mf) €ic) it (3)

r=1963,7£1967
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where yy(;), refers to the total activity of firm f across all its unregulated plants in industry
7. Activity is measured in terms of employment, sales, cost of fuels and number of plants.
Treaty € (0,1) denotes the share of pre-regulation firm-industry employment located in
eventually regulated counties. This specification isolates shifting of activity between plants
producing similar products in a given firm. Since all firms in this sample operate a regulated
plant, we test whether firms that are more strongly exposed to the regulation increase activity
among their unregulated plants.

Even if nonattainment is exogenous conditional on fixed effects, firm level exposure to
regulation at other plants may not be random in equation (3): Large firms may dispro-
portionately locate in more densely populated, regulated areas. If these firms are also on
different growth trajectories at their unregulated plants, this can create omitted variable
bias. To address this concern, we construct pseudo-exposure measures following the ap-
proach outlined in Borusyak and Hull (2023). We repeatedly randomize regulation across
counties with ex ante characteristics similar to those that were in fact regulated.'® We
then compute firms’ pseudo-exposure as the average across these counterfactuals, interact it
with year fixed effects, and include it as a control variable. As before, we also control for
industry-year and firm fixed effects. Standard errors are clustered at the firm-level.

Figure 3 shows that exposure to regulation leads to significant increases in employment
and sales at unregulated plants. Effects on the number of plants are muted. Within firm
leakage effects for sales and total cost of fuel are shown in the panel B of Figure 3. After
regulation, both sales and fuel expenditures grow more strongly in more exposed firms.
Similar to the effects of regulation unfolding over time, these effects are highly persistent. In
1982, a 10% increase in exposure leads to a 4% increase in employment and a 7% increase
in sales.!” In Appendix Figure A1, we show robustness of these results to using a discrete
treatment variable that equals one for firms with Treaty > Median(Treat(f)).

To summarize the results, Figure 4 plots the average change in the share of firm employ-
ment, sales, number of plants and cost of fuels that is accounted for by plants in regulated

counties. The sample consists of firms that were active in both nonattainment and attain-

18 Appendix E describes the exact algorithm we use to compute counterfactual regulation assignments.
19We obtain these by exponentiating the event study coefficients for sales and employment and multiplying
both by 0.1.
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ment areas prior to the policy. The share of firm activity carried out in nonattainment areas
was stable between 1963 and 1972, but declines by roughly 3 percentage points after the
regulation. We have identified three drivers to this shift: declines in sales and employment
among regulated plants, exit of regulated plants, and increases in economic activity among

unregulated plants.

5.3 County-level Effects of Nonattainment Status

To study the effects of nonattainment at the county-level, we draw on recently digitized CBP
data provided by Eckert et al. (2022).?° The county-level analysis complements our plant-
level estimates in Section 5.2. By studying effects on total employment at the county by
2-digit sector level, we additionally account for effects of the policy on plant entry. An advan-
tage of the plant-level approach is that we can better account for compositional differences
between the types of plants that operate in nonattainment and attainment counties.

We use the following event-study specification to estimate the effects of nonattainment
on county-sector employment via PPML:

1987

Employment,;, = exp Z 1{t =7} x (Treat.5; + [Ecjvr + XcjOr) + piej + i | €cie-

7=1967
T#1970

(4)
We separately estimate the effect of own exposure to regulation via T'reat. as well as through

indirect exposure to regulation in other nearby counties

K -5
k+#c Zk’;ﬁc ck’

where D, is distance between county ¢ and k and 6 is a decay parameter determining
the relative weight on counties at different distances.?’ Intuitively, indirect exposure is
large if a county is located close to other regulated counties that also have a lot of em-
ployment in sector j. This approach to modeling spatial leakage is inspired by Adao,
Arkolakis, and Esposito (2019) and we follow their work in additionally controlling for

20The CBP is an unbalanced panel at the county-sector level, but our results are robust to estimating
effects on a balanced panel of county-sectors.
21 Distances between counties are taken from the NBER County Distance Database.
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X = Zi;c #{’“;_gEmploylrnent,leg70 to capture agglomeration or business stealing ef-
fects. Indirect exposure across counties may be subject to similar omitted variable concerns
as the within firm leakage. We therefore include a county-level pseudo-exposure measure to
control for the effect of non-random exposure. To control for differences between attainment
and nonattainment counties, we also add county-sector, as well as sector- and state-year
fixed effects and the interaction of (log) initial population with year effects. We cluster our
standard errors at the state-level since the indirect exposure variable may induce spatial
correlation in residuals across counties.

Figure 5 plots the county-level effects of nonattainment BT on polluting industry employ-
ment (SIC codes 24, 26, 32 and 33). By 1987, employment declines by 25.2% relative to
attainment counties, in line with effects estimated at the plant-level. Figure 6 presents our
estimates for spatial leakage 4, for a spatial decay of § = 5, following the baseline value used
by Adao, Arkolakis, and Esposito (2019). Counties more heavily exposed to the regulation
through their neighbouring counties see increases in employment. The estimated effects im-
ply that a county at the 75th percentile of the empirical distribution of the exposure variable
IE.; sees a 2.4% increase in employment relative to a county at the 25th percentile. Figure
A2 shows that these spatial leakage effects are robust to different values of spatial decay.
Results are robust to any § € {1,3,5} or using a simpler spatial weight that is equal to one
for employment within 40 miles of a given county and zero otherwise.

These county-level results complement the leakage along firm ownership networks by also

including leakage driven by intra-national trade.

5.4 Further Results

Broader Employment Effects. Consistent with prior literature, we have estimated the
effects of nonattainment by studying the response of industries labeled as polluting by Green-
stone (2002). Figure A3 shows effects of the regulation on non-polluting industries as well
as total manufacturing employment. Employment declines in non-polluting industries are
somewhat smaller than in polluting industries at around 10%, with slightly larger effects on
total manufacturing employment. These results illustrate that the effects of nonattainment

are not offset by reallocation of workers to less polluting industries. Instead, they are con-
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sistent with regulation negatively affecting the entire manufacturing sector. Figure A3 also
allows us to relate our results to alternative estimators of the effects of nonattainment. In
some specifications, Greenstone (2002) relies on a triple-difference design comparing clean
and dirty industries, before and after regulation passed across attainment and nonattainment
counties. From Figure A3, we see that this type of comparison would imply smaller effects of
nonattainment since non-polluting industries decline too. We believe this comparison would
understate the effects of nonattainment because non-polluting industries remain a plausible
target for regulators. To illustrate this point, Figure A4 plots the share of Toxic Release
Inventory Plants that have a permit under a regulatory program related to the Clean Air
Act. This proxy for regulatory activity is relatively uniformly distributed across industries,
in line with Figure II in Walker (2013).

Effects on Wages. We also consider the effect of regulation on manufacturing wages.
To do so, we use decadal IPUMS census data to construct composition adjusted average
log wages at the commuting zone level.”? A commuting zone is considered treated if any
of the counties within the commuting zone is in nonattainment (cf. Currie, Voorheis, and
Walker (2023) for a similar approach to defining treatment). Figure A5 shows no statistically
significant effect on average wages.

Effects on TSP Pollution. We provide new estimates of the effect of nonattainment on
long-run TSP pollution levels. Figure AGA shows that nonattainment decreases TSP pollu-
tion. We estimate short-run effects close to those in Isen, Rossin-Slater, and Walker (2017),
but our estimated long-run decline is roughly 50% larger. Analogous to the employment
leakage in Figure 6, Figure AGB shows our estimates of pollution leakage. Pollution leakage
are a function of two competing forces: lower pollution in regulated counties also means
less pollution can end up in neighbouring counties through atmospheric transport. On the
flip side, reallocation of economic activity increases pollution in neighbouring counties. We
find these two channels roughly offset with positive, but statistically insignificant pollution

leakage.

22We follow the approach in Sudrez Serrato and Wingender (2014) to estimate these price indexes.
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6 Quantitative Model
6.1 Quantitative Spatial Equilibrium Model

We now outline a model of multi-region trade and production with multi-plant firms that
matches the production activity of pollution-intensive manufacturing industries across space.
We structurally estimated this model and show it can reproduce the reduced-form results
in Section 5. We then use this model to guide our interpretation of aggregate implications

from the reduced-form difference-in-difference estimates of the Clean Air Act regulations.

6.1.1 Demand

The economy has N locations. Each location m has a representative consumer with prefer-

ences given by a Cobb-Douglas aggregator across sectors

Un = H(cfn)as, where Zoﬁ =1,

and where the sectoral consumption

()

¢, (w) is the quantity that the consumer purchases from firm w and ¢, is the set of firms in

n

)T aw) " 5)

S
m

sector s selling to market m. The parameter n governs the elasticity of substitution across
varieties within each sector.

Utility maximization yields the following individual firm demand in market m

(W) = pil(w)*”m Prn(@) A, (6)

where

1 1—n
Pin(w) _"} :

el

Given consumer expenditure I,,,, the sector expenditure is I, = a°I,,, and the market-

s
m

specific aggregate price is defined as P, = [[,(Ps,/a®)*". Since each sector s is separable in
terms of their consumer expenditure /7, and price index P; . we develop the firm production

and sales decisions abstracting from s below.
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6.1.2 Production

Since each sector is separable in terms of demand, we now abstract from s in the following.

Cost function FEach firm w is defined by its core efficiency ¢ and a set of locations with
active plants Z. Firm w assemble her variety in market m with a unit continuum of inputs

shipped from its production locations such that*

(W) = [/01 qm(w,j)nnldj:| T

Labor is the only input in production with constant return-to-scale technology. For each
input j, there is a set of IID random productivity draw v, associated with each of her plants
[ € Z. The productivity distribution is assumed to be Fréchet (which depends on both firm

efficiency ¢ and local condition T;)
Pr(v < ) = exp(—(¢T)"(x) ™).

Given the assumption of production technology, the cost distribution of sourcing from each

location remains Fréchet.

-0
Wi Tim Wi Tim (/]
P < =1— .
r( ” <c) exp(( oT, ) c)

The firm chooses to ship each input j to market m from its lowest cost location [ € Z. Given

that Fréchet is max-stable, we have its minimal cost of input ¢,,(w, j) shipping to market m

distributed as

-0
Gm(cl¢v Z) =1- exp | — (Z wq;%m) Ce

lez

We can obtain the expected cost of serving market m for firm w per unit of shipment as

(0 2)= | [ 1 enli. 30 o [ edGelo ) o 7)

. Q—i‘l—n ﬁ Wi Tim O\
() (505

2Without loss of generality, assume these inputs j € [0, 1]

D=
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Profit Maximization. Given the assumption of monopolistic competition in each product
market, each firm sets a constant markup of % for all its products. Firm w’s price for market

m is then

i, 20) = () ent0. 260 = (2 ) 1 | & (%ﬂe ®)

D=

leZ(w)
Each firm has sales at market m of
I, _
Sm(gbv Z(W)) = me<¢7z(w))l " (9)
Am

The model also characterizes the share of sales to market m that are sourced from [ € Z(w) :

(Wi i) 0T}

() Z(w)) = ZkeZ(w) (Wk Tk ) 0T}

(10)
As a result the total shipments from a firm’s plants in location [ € Z(w) are given by

(9, Z(w)) = Y (s Z(w)) X ptim (¢, Z(w))

m
Firms choose the optimal combination of locations Z, given its productivity ¢, headquar-
ter location [, and the the set of IID random fixed costs ﬁ/ ~ Gy, VI' # [ to maximize profits

as follows

w(6 (@), fo@) = max =3 sn(@ ZW) = S flw), (11)

ZeZ 1
m VeZ(w)l'#l

where Z(w) always includes headquarter location [ and firms pay fixed costs to operate

additional plants.

Entry. A large pool of ex ante identical potential entrants decide whether to operate in
each industry. They incur an entry cost to take random draws of their productivity ¢ ~ Gy,
their headquarter location [, and the set of IID random fixed costs ﬁ/ ~ Gy, 1" # 1 to operate
another plant in any additional locations. The free entry condition will rationalize the mass
of active entrants where the entry cost equals the expected profit. We denote the total mass

of entrants as E and the realized location-specific number of firms as E; = i, E.
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6.1.3 Equilibrium

Given wy, I, Ti, Tim, Gy, Gy, Ym,l = 1,..., N, the industry equilibrium is a vector of price
indexes P,,, allocations for the representative consumer g, (w), firm prices p,,(¢, Z(w)) for

each m = 1,..., N and their location choices Z(w) such that
1. Equation (6) solves the consumer’s optimization problem;
2. P, satisfies equation (7);
3. and p, (¢, Z(w)) and Z(w) solve the firm’s profit maximization problem (11).%*

4. Free entry such that

| Bl G = 1o
0
where gy is the exogenous probability that an entrant is headquartered at location [.

This model is rich enough to capture important geographic patterns in the US economy.
After calibrating the model, we show that we can implement the regulation in our model
by imposing nonattainment status on a large number of local areas. Doing so allows us
to find the implied costs of the regulation that rationalize the decline of employment in
nonattainment regions relative to attainment regions. As we show in Section 7, while some
of the intuitions from our simpler model continue to hold, the economic realism of the
quantitative model yields a more precise quantitative account of the economic costs of the
regulation in both attainment and nonattainment areas.

We next first describe a simplifying procedure to solve the multi-unit firm location prob-
lem for a large number of local markets. Second, we describe how we parameterize trade
costs and the distributions of productivity and fixed costs. We then discuss how we calibrate
key parameters using the simulated method of moments. Finally, we show that the model
provides a realistic approximation of the geographic distribution of economic activity among

regulated industries prior to the implementation of the CAAA.

24Gince we are interested in the response of a subset of manufacturing industries to environmental regula-
tions, we define an industry equilibrium where wages in each location are taken as given.
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6.2 Simplifying the Multi-Unit Firm Location Problem

Given the local and place-based nature of nonattainment areas, a key goal of our analysis is to
model a large number of locations that correspond to attainment and nonattainment areas.
In practice, we use the 1990 definition of Commuting Zones (CZs) and simulate 722 CZs,
excluding CZs in Alaska and Hawaii. In this setting, the number of location combinations
that firms may choose from is a staggering 27%2.%

A factor that complicates solving this large combinatorial choice problem is the fact that,
in theory, the location decisions of different plants in a firm can be interconnected. To see

this, write the total payoff of the firm with core productivity ¢ and operating locations Z as

1 0 1-n _— -3
w02=L () s |(S(%)) ] oo
A\ m lez N1 1€z
N =1
~ _ lm
=wor Y| (S(5) ) | Xe o
m ez N1 ez
where 79 = #(Fg)l_”. It is clear from the payoff function that more productive firms

have larger payoffs. In addition, more productive firms also operate in more locations, on
average. However, the choice of locations Z depends on the set of trade costs 75, and is a
combinatorial problem that is burdensome to solve.

To make this location choice problem computationally tractable, we assume firms pick
their plant configuration Z by solving a two-tier location choice problem. In the first stage,
firms choose the best potential production location within each state according to the sourc-
ing potential of commuting zone I, given by > A, <TZTT>9 — f;. This sourcing potential
reflects the profit a single-plant firm would make from choosing that commuting zone. In the
second stage, firms solve the combinatorial plant location choice problem by choosing the
set of states where they produce based on the potential payoff of producing in each state as
determined in stage one. This second stage fully takes into account potential cannibalization
effects that arise if firms locate plants in neighboring states. Although the combinatorial

problem is formulated at the state level, brute-force computation remains computationally

prohibitive. To accelerate computation, we leverage the submodularity property of firm

25Note that 2722 is more than 220 quadrillion times larger than a googol squared.
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profits and employ squeezing and branching techniques, following the approach of Arkolakis,
Eckert, and Shi (2023). The solution to this simplified choice problem deviates from the
solution to the combinatorial problem across all 722 commuting zones by limiting firms to
one plant per state and introducing a simple heuristic where to locate that plant within
state. The benefit of this heuristic approach is that it allows us to examine the effects of the
Clean Air Act at a detailed geographic level while maintaining key aspects of the location

decisions faced by large, multi-plant firms.

Iterative Algorithm. We implement this decision rule using the following algorithm.
1. Take an initial guess of A,,;

2. For each firm ¢

-0
(a) and for each state s, find the most attractive location maxjes >, A, (2,—:”) —fi.

Denote the set of most attractive locations as N*.

(b) find the optimal combination of locations Z across [ € N* by solving (11).

3. For a firm with productivity ¢ at [, its expected cost of selling to market m is

(@) =Tyl x [ 3 (—m)

keZ()) T

S

if the firm is active in any locations. The firm sets the price in market m as

n
n—1

Pm(,1) = cm(9,1).

4. We can then update the price index P, as

P =Y B / P, 1) F(6)do.
I ¢

5. Tterate until A,, converges.

In practice, this algorithm solves the equilibrium of the model including the location

decisions of multi-unit firms in a computationally tractable way.
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6.3 Parameterization and Estimation

We implement the model in four steps. First, we take expenditure shares directly from the
data. Second, we assign the elasticities of substitution across varieties and within the firm
to values commonly used in the literature. Third, we set trade costs to values implied by
estimated gravity models in the literature. Finally, we parameterize the distributions of
fixed costs and productivity and we estimate these parameters using the simulated method

of moments.

Step 1: Expenditure Shares. We assume that the mass of potential firms in each
location, Ej, is proportional to the number of establishment in each location.?® In the absence
of granular commuting zone-level spending data, we impute I,,, by combining county-level
personal income from the BEA with the state-level spending on the four polluting sectors
from the Commodity Flow Survey. Letting s be state and ¢ county, we compute

Income,
]m - ]sa
Z > .. Income,

ceEm cEs

where [ is state-level spending from the Commodity Flow Survey and Income, is county-
level income from the BEA.?” Both spending and county-level income are for the year 2002,

which is the earliest year the state-to-state CFS is available at the industry-level.

Step 2: Elasticities of Substitution. We set the elasticity of substitution across varieties
ton = 4, in line with consensus estimates from the gravity literature (Head and Mayer, 2014).
To calibrate the shape parameter of the Fréchet distribution for plant productivity draws, we
rely on estimates from prior literature literature and pick a value of § = 8. Tintelnot (2017)
uses § = 7 because it lies within the range of productivity dispersion estimates reported
in Eaton and Kortum (2002). Head and Mayer (2019) estimate § = 7.7 based on sourcing

decisions of multinational car manufacturers.

26Given the low share of multi-unit firms, the spatial distribution of the number of firms and the number
of establishments are highly correlated.

2"While commuting zones sometimes cut across state borders, counties are nested within both commuting
zones and states.
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Table 1: Summary of Parameters

Parameter Functional Form Value Source

Demand elasticity n=4

Product cost distribution Fréchet =28

Trade cost Tim = distlﬁnib B, =0.375 CFS Data

Fixed cost at home filw) % logN (pify,0¢)  pg, = —4.0 ~ 10% of sales
Firm productivity o “ logN(0,04) 0.645 MU sales share
Fixed cost at away fr(w) b logN (i, 0¢) (1.99,1.01) MU share/#Plants

Step 3: Trade Costs. Trade costs, 73,,, depend on distance dy,,, through 71,,, = (din/dporm)?
for dj,, > dporm; distances below d,,,., incur no trade cost. The normalization distance,
dporm, 18 set at 50 miles to align with the observed level of out-of-state trade, where 67% of
consumption originates from producers located outside the state. We use a value of g3, that
is consistent with estimates of gravity models in the literature. Disdier and Head (2008)
report that the elasticity of trade relative to distance, based on 103 papers, ranges from 0.04
to -2.33. Because the industries we study are relatively heavier, we select a trade elasticity

in the upper range of -1.5, which in our model implies a value of 3, = 0.375 across CZs.

Step 4: Estimation of Fixed Costs and Productivity Distributions. We assume
that firms’ core efficiency is log-normally distributed ¢ ~ LogN (0, 04). Similarly, we model
the fixed costs of entry in domestic and other locations by assuming that f; ~ LogN (p,,0¢)
and fy ~ LogN(up,o0f), where py < pp. Because our model is static, it is unable to
separately identify entry costs for home and other locations. We therefore set py, = 4.0,
such that the mean fixed cost share of sales is 5% among plants in home locations.

We use the simulated methods of moment to estimate the firm productivity disper-
sion (0,) and fixed costs parameters (pf,,0¢). We denote the parameter vector as ¢ =
{04, 1y, 0} For a candidate value of ¢, we simulate the model and compute the following
moments: (1) share of multi-unit firms; (2) average number of plants per multi-unit firm;
and (3) Share of sales from multi-unit firms. Our estimate of ¢ minimizes the criterion func-
tion [mg — m(y)|'W[mg — m(1)], where my are the data moments, m(1) are the simulated

model moments, and W is the weighting matrix. Panel B of Table 1 shows the estimated
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Table 2: Moments in Data and Model

Data Model
Targeted:
MU Share 0.055  0.055
Average number of plants per MU  3.72 3.72
Share of production from MU 0.785  0.788
Untargeted:
Output share of top 1% firm 59.4%
Output share of top 5% firm 78.4%
Output share of top 10% firm 84.3%

parameters. The implied mean and median share of fixed cost to sales for plants in non-home

locations are 12.3% and 12.9%, respectively.

Model Fit. Table 2 shows that the model successfully matches the data moments. To
further check if the model captures the geographical features accurately, we compare the
spatial distribution of sales in the data and model. Figure 8 shows the maps of production in
the data and the model. The correlation between the model-simulated and actual production
is 74.8%. The model shows a slightly less geographical concentrated pattern of production
compared to the data. This discrepancy may arise because the model assumes uniform local
productivity across all locations. A model that also calibrates local productivities would

perfectly match the model’s production distribution with the observed spatial data.

7 Quantifying the Economic Effects of Environmental
Regulations

We now use our estimated model to simulate the distribution of economic activity before and
after the introduction of the CAAA. We assume that the regulation imposes a productivity
discount on regulated locations, resulting in their productivity being adjusted to 71}, where
Br < 1. Figure 7 displays a map marking regulated and unregulated areas at the commuting
zone level. For a given value of 87, we solve the equilibrium before and after the regulation
and replicate the empirical analyses from Section 5 using data generated by the model. We

then solve for the value of S such that the model-implied difference-in-difference estimates
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match the plant-level direct effect of regulation estimated in Section 5.

Panel A of Table 3 compares the estimated reduced-form results with the model-implied
values using a value of Sy = 0.95. Column (3) shows that the location-level effects of
nonattainment on sales is -36%, with a standard error of 7%.2° While this estimate is
larger than the estimated direct spatial effect, it falls within the confidence interval of the
empirical counterpart. Through the lens of the model, the entry margin is responsible for
the difference between the plant-level and the spatial direct effect of regulation. Regulated
areas see a decline in entry, amplifying the effect of regulation beyond what is implied by
effects on incumbent plants.

We can assess the empirical performance of our model by comparing model-implied to
empirically estimated leakage and within firm reallocation effects. These empirical moments
were left untargeted in our calibration strategy. The first column shows that the model qual-
itatively replicates, but quantitatively understates the within firm reallocation of economic
activity from regulated to unregulated areas (-1.4% versus -2.9% in the data). Turning to
leakage effects, we implement our empirical strategy of estimating within firm leakage effects
in the model and find the model closely replicates the data. Why can our model successfully
replicate this untargeted moment? As shown in section 4, the within-firm leakage depends
on the difference between within () and across firm substitution (7 — 1). We use standard
values from the literature for these parameters and find the implied leakage closely matches
the data. Consistent with the theory, we have also solved the model for # = n — 1, and find
zero within firm leakage effects in that case.

Turning to spatial leakage, we construct the indirect exposure to regulation for each
location as in our empirical analysis, setting 6 = 1.5 to align with the value used in the
model. The estimated effects imply that a location at the 75th percentile of the exposure
distribution experiences a 1.8% increases in output compared to a location at the 25th
percentile. The empirically estimated leakage is substantially larger at 9.1%.?° In on-going

work, we are investigating whether a model with differential productivity prior to regulation

28Through the lens of our model, employment and sales only differ by constant that is unaffected by
regulation.

29To align our empirical analysis with geography in the model, the estimates reported in Table 3 are
estimated by aggregating the CBP data to the commuting zone by sector level.
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Table 3: Difference-in-Difference Estimates in Data and Model

With-in Firm Direct Effect leakage Effect
Reallocation Plant Spatial Firm Spatial

A. Data vs. Model

Empirical -0.0292 -0.3517  -0.2901  0.5382  0.0911
(0.0026) (0.0717)  (0.0529) (0.2064)  (.0457)
Model -0.0143 02609  -0.3751  0.5332  0.0179

(0.0016) (0.00141) (0.0126) (0.0876) (0.00981)

B. Decomposition
Change in Treated -0.2146  -0.1991
Change in Control 0.0464 0.1760

Notes: The coefficients on the spatial leakage effect equal the actual coefficient from the regression multiplied
by the interquartile range of the indirect exposure variable.

better matches these leakage estimates.

Decomposing Difference-in-Differences Estimates. As discussed in Section 4, coeffi-
cients from difference-in-differences models reflect a relative effect between the treated and
control groups. Our model allows us to decompose this coefficient into the specific effects on
regulated locations and unregulated locations. The decomposition shows a 19.9% decrease
in sales for regulated locations, accounting for 55% of the estimated effect, and a 17.6%
increase in sales for unregulated locations, representing 45% of the estimated effect. We can
apply the same decomposition to plant-level direct effect coefficients, with the results pre-
sented in Panel B of Table 3. Consistent with the insights from Section 4, we find that the
estimated difference-in-differences coefficients overstate the negative impacts on economic
activity in nonattainment areas. At the same time, these results show that attainment areas

see economic benefits from the regulation.

Multi-Unit Firms and the Effects of Regulation. Our model allows us to more pre-
cisely quantify the role of within firm leakage for the reallocation of production to unregulated
areas. Column 1 of Table 4 shows these partially regulated firms have a much higher sales

share at baseline. Larger firms are mechanically more likely to be exposed to the regulation
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Table 4: Effects of Regulation on Plants in Unregulated Areas

Sales Share Changes in Sales Intensive Extensive

Unregulated Firms 23% 6% 98% 2%
Regulated MU Firms 7% 23% 38% 62%

through their larger plant network, explaining this discrepancy. Beyond their larger size
prior to regulation, unregulated plants of regulated firms are also significantly more sensitive
to regulation than those part of entirely unregulated firms (column 2). The extensive mar-
gin is especially important for these differences, as illustrated by columns 3 and 4. Overall,
these results suggest that incorporating multi-unit firms substantially affects the amount of
reallocation to unregulated regions. In line with this discussion, a calibrated version of our
model with § = n — 1, i.e. abstracting from within firm reallocation, features substantially

smaller increases in sales among plants in unregulated areas (11 versus 18%).

Regional and Aggregate Price Changes. Through the lens of the model, price indexes
are a direct measure of the consumption costs of the regulation. Given fixed expenditure,
real consumption is determined by dividing expenditure by the market price. Model simula-
tions indicate that prices, including those in both nonattainment and attainment locations,
increase across most locations. Prices in attainment areas, where output increases, also rise
because these markets source from other regulated locations that have experienced a pro-
ductivity loss. While most locations experience price increases, 52 out of 722 locations in
our model see a decline in prices. This decline is driven by increases in the production of
the home or adjacent locations, which saves on trade costs.

Figure 9 plots the percentage changes in prices for each CZ. The West Coast and Mid-
Atlantic regions experience the largest increases in prices, whereas the central areas of the
country face smaller losses or even experience price declines. The aggregate output loss
across the entire economy is 1.3%. This number is derived under the assumption of uni-
formly distributed local productivity. If regulation disproportionately affects locations with

higher productivity, the output loss could be more significant.
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Table 5: Percent Decline from 1967 to 1987

Dirty Industry Clean Industry Model

Std across CZs -26% -13% -4.1%
Top 5% CZ share -23% -12% -3.6%
Top 10% CZ share -17% -9% -2.8%

The table shows percent declines in different measures of geo-
graphic concentration across commuting zones (CZ). “Dirty In-
dustry” refers to four polluting sectors considered in our empir-
ical analysis. “Clean Industry” refers to the remaining manu-
facturing industries. “Model” indicates the predicted decline in
induced by the regulation counterfactual where we impose a 5%
productivity decline in regulated areas.

Environmental Regulation and the Decline in Regional Concentration. Be-
tween 1967 and 1987, the geographical concentration of manufacturing falls significantly.
Columns 1 and 2 of Table 5 shows that for both clean and dirty sectors, the regional con-
centration of employment, as measured by declines in the standard deviation of employment
shares across commuting zones. The share of employment accounted for by 5% and 10%
largest commuting zones falls by a similar amount in percent terms. Notably, these declines
are more pronounced in dirty than in clean industries. Column 3 shows that the model
predicts roughly 1/6 of the overall decline in concentration in polluting industries or roughly
1/3 of the relative decline. The latter may be a more appropriate quantification of the ef-
fects of regulation because it nets out common forces affecting the decline in concentration
as measured from changes in clean industries.® Why can regulation lead to a decline in
regional concentration? The Clean Air Act targets more densely populated areas that are
hubs of manufacturing activity. By reallocating activity towards less urban areas, regulation
reduces geographic concentration.

These effects also speak to the pollution haven effect whereby environmental regulation
co-determines the geography of production in pollution intensive industries (Cherniwchan,
Copeland, and Taylor, 2017). Prior to regulation, manufacturing activity was centered

around population centers. By increasing the cost of pollution in these areas, the Clean

30Clean industries may also be affected by regulation, but Figure A3 shows these effects are substantially
smaller than for polluting industries.
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Air Act shifts the comparative advantage in pollution intensive production towards more

rural regions.

8 Conclusion

Environmental regulations that target regions can create substantial reallocation through
both market and within-firm leakage. This paper improves our understanding of the mag-
nitude of these leakage effects by providing new empirical evidence on the effects of the
CAAA. Using confidential data from the Census Bureau, we provide new results highlight-
ing the importance of considering reallocation along firm ownership networks. Additionally,
these results show that the CAAA had prolonged and growing effects on regulated firms, sur-
passing estimated effects in previous studies. In particular, entry and multi-unit adjustments
play key role in long-run responses. Using newly-harmonized data on local economic activity,
we also provide new evidence of leakage effects across counties and commuting zones.

To interpret these new empirical results and to quantify the direct, indirect, and aggre-
gate effects of the CAAA, we build a spatial equilibrium model with intra-national trade and
multi-plant location choice. The model shows that simple difference-in-differences compar-
isons exaggerate the negative effects of regulations, since both regulated and non-regulated
regions are affected in equilibrium. On net, we find that slightly more half of the estimated
effects on local markets are driven by declines in the output of regulated regions, with the
rest being due due to increases in the output of non-regulated regions. Finally, we find that,
while most regions see a consumption cost from the regulations, these costs are dispersed
across locations depending on whether a given location is regulated as well as the regulation
status of neighboring regions. Overall, we find that the consumption cost of the CAAA was
on the order of 1.3% of consumption. By providing a more detailed quantification of the
geographic distribution of the costs of environmental regulations, our model moves us one

step closer to evaluating the welfare costs of placed-based regulations across the US.
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Figure 1: Direct Effects of Nonattainment on Plant Outcomes
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Notes: Figure 1 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on employment and sales. Standard errors are clustered at the county level. Source: Authors’ calculations
based on CM, LBD and EPA Greenbook.
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Figure 2: Effect of Nonattainment on Plant Exit
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Notes: Figure 2 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on probability of exit. Standard errors are clustered at the county level. Source: Authors’ calculations based
on CM, LBD and EPA Greenbook.
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Figure 3: Within Firm leakage Effects

(A) Within Firm leakage: Plants, Employment
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Notes: Figure 3 displays Dynamic DD estimates and 95% confidence intervals describing the within firm
leakage effect of the nonattainment standards. Standard errors are clustered at the firm level. Panel (A)
displays within firm leakage effects for number of plants and employment while Panel (B), shows leakage of
Sales and Fuel Cost. Source: Authors’ calculations based on CM, LBD and EPA data.
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Figure 4: Share of Firm Activity in Nonattainment Counties
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Notes: Figure 4 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on regulated firms’ activity share in NAA counties, with standard errors computed using a robust variance
estimator. Source: Authors’ calculations based on CM, LBD and EPA Greenbook.
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Figure 5: Direct Effects of Nonattainment on County-Level Employment
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Notes: Figure 5 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on county-level employment. Standard errors are clustered at the county level. Source: Authors’ calculations
based on CBP and EPA Greenbook.
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Figure 6: Spatial leakage Effects of Nonattainment
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Notes: Figure 6 displays dynamic DD estimates and 95% confidence intervals describing the spatial leakage
effect of NAA. Standard errors are clustered at the county level. Source: Authors’ calculations based on
CBP and EPA Greenbook.
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Figure 7: Map of Regulation at the Commuting Zone Level

Commuting Zones Regulated for PM

L]

] 2k n i! il
P,
) *:.i»!l%xf‘"

R A
'1 g8 e
AT WL

e
Y
ﬂ\.'#i'

B Regulated, N: 186
L1 Unregulated, N: 536

Notes: Figure 7 displays a map of the regulated and unregulated commuting zones.
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Figure 8: Spatial Distribution of Production in Data and Model
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Notes: Figure 8 displays the spatial distribution of production (sales) in data and model. Sales data is
constructed using employment data from the CBP and wage data from the IPUMS Census. In the model,
sales are proportional to labor costs, which equal employment multiplied by wage. We then normalize the
sales so that total sales equal total expenditure across all locations. Expenditure is normalized so that the
average expenditure at the commuting zone level equals 10.
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Figure 9: Spatial Distribution of Model-Simulated Price Changes
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Notes: Figure 9 displays the spatial distribution of percentage price changes as simulated in the model.
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Online Appendix: Not for Publication

This appendix includes several sections of supplemental information. Appendix A presents definitions
of all the variables used in the paper. Appendix B presents additional background details of the CAAA and
nonattainment status. Appendix C details the derivation of our motivating two-region model. Appendix D
presents figures for additional results. Appendix E explains the implementation of Borusyak and Hull (2023)
exposure control.

A Variable Definitions

Variable Name Description

National Ambient Air Quality Stan- | Identifies Nonattainment Areas (NAA) as counties exceeding
dards (NAAQS) NAAQS pollution levels for total suspended particulates.

Exit Binary indicator for plant activity in year t, equal to 1 if the plant

has exited, otherwise equal to 0. Source: Census of Manufactures,
Longitudinal Business Database.

Xi Control variables including distance measures and employment for
county i’s.
Wages Average manufacturing wages adjusted for demographics and in-

dustry affiliation for commuting zone c at time t. Source: Census
of Manufactures, Longitudinal Business Database.

Labor Productivity log of total employment divided by total value of shipments Source:
Census of Manufactures, Longitudinal Business Database.
Energy Efficiency log of total energy expenditure divided by total value of shipments.

Source: Census of Manufactures, Longitudinal Business Database.

B CAAA History and Detalils

In this appendix we explore the history of the Clean Air Act and provide additional details on its implemen-
tation.

Clean Air Act was originally passed in 1963 and the Air Quality Act was passed in 1967. This federal
legislation was designed to help develop technologically feasible emission standards. By 1969, these were
largely viewed as “nearly a complete failure” Melnick (1983). Political support for improved federal regula-
tions surged following the well-publisized Cuyahoga river fire and the subsequent Earth Day demonstrations
on April 22. This led to President Nixon, despite his anti-regulatory tendencies, drafting the Clean Air Act
and the creation of the EPA. Democrats, particularly Senator Edmund Muskie from Maine, had long been
pushing for more stringent regulations and played a major role in shaping the final legislation. The Act
was passed by the House of Representatives by a vote of 374-1 on June 10, 1970. It passed the Senate 73-0
on September 22, 1970. The senate version was more stringent than the house version and the final bill
incorporated much of Senator Muskie’s previous written regulation. Muskie and Nixon were political rivals
and Muskie accused Nixon of hopping on the environmental bandwagon. The bill was signed into law on
December 31, 1970.

As part of the 1970 CAAA, States were required to submit State Implementation Plans (SIPS) by 1972
that would allow them to achieve attainment standards by 1975. EPA had the right to reject SIPS proposed
by states. Extensions for achieving these standards were granted for some states until 1977.

In the 1977 amendments to the Clean Air Act, important provisions were introduced to regulate emis-
sions from new stationary sources in both Attainment and Nonattainment areas. Under these amendments,
new facilities in Attainment areas were required to incorporate "best available control technology’ to mitigate
emissions. In Nonattainment areas, not only were new sources of emissions affected, but also modifications
to existing sources. In nonattainment areas, new or modified sources were obligated to achieve the ’lowest
available emissions rate’ and were further mandated to secure emission offsets to compensate for any addi-
tional emissions they generated. Industries varied in how they were required to comply with the LAER. Any
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plant burning coal in nonattainment area had to achieve percentage reduction of sulfur in fuel. This was
commonly done through fuel switching to coal with lower sulfur content. In addition to fuel switching, plants
were required to install new abatement capital including scrubbers, electrostatic precipitators and cyclone
separators to remove particles from exhaust gases. The 1977 amendments also clarified the enforcement
powers of the EPA allowing for civil penalties, non-compliance penalties and construction bans for failure to
meet attainment standards. It made noncompliance penalties mandatory for industrial sources that failed
to comply with the regulations.
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C Derivations Two-Region Model

Derivation Results 1 and 2. Specializing the formula for plant-level revenue to the special case of two
symmetric regions, we have that sales for single unit firms are equal to

1-n
= (T tg) e eny

Deflating by the price and deflating by productivity ¢7} to go from quantity to input requirement shows that
labor demand is proportional to revenue. Log-linearizing, this expression around a symmetric equilibrium
gives the result. Summing across destination markets, total sales of a MU plant in j are
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Sales and labor demand continue to be proportional by the logic pointed out in footnote 8 in Tintelnot
(2017): Plants in the model can be thought of as setting a price equal to the mark-up % over marginal
costs. This ensures labor demand and sales continue to be proportionally constant. Log-linearizing this
expression gives

1
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Using T; = Tj» and P; = Py, the expression can be simplified to

—0
MU; 1 T

1 2 ¢ 2
(1 +¢9> * (1 +79)
Sales for plants in j’ are equal to
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Log-linearizing gives:

dlnPj/ + OdlnTJ

+(7’]—1—€) thj-

] —0
MU T 1 2T
Derivation Results 3 and 4. B
Firm ¢ pays fixed cost fy for its first plant and f; for its second plant. We normalize expenditure in
both locations E; = E;; = w; = w); = 1 - our results hold for any symmetric value. Conditional on its mode
of operation, standard arguments imply that CES-monopolistically single unit firms earn profits

SU(qb)_l n Tewj 1-n Pnil—l—Pnil 1-n _f
; ACES T ¢ T .
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The marginal plant in 7 has productivity q_Sj defined by

1
- - W 1 _ 1 -\ T3
WfU(¢j):0 = ¢ = ( n I‘(,J> (nfo)™T (P]T’ 1+P]77, 11 n)l o

n—1"T;

A firm operating with two plants earns profits
1 n 1=n
- -1 - —1 - F
MY () = " 1% (77_1) (Pjn (C?/[U)l T+ Pﬂ (CJMU)I n)) — (fo+ f1).
The marginal MU firm has productivity (Zj defined by

MY (¢;) = 7Y (¢;)

which can be solved for as

6= AT (B (@) = () 4 P () - (reS0)m))
Log-linearized equilibrium
In a symmetric equilibrium, the log-linearized cutoffs can be expressed as
ding; = —dInTj — wYdIn P; — (1 — wY)dIn P},
and
ding; = —(1 — w )dIn P; — wYdIn Py

where wgy = 1-&-%*" > % is share of total sales to home market for a single unit firm. To derive the cutoff
for MU firms, the log-linearized cost functions are
1

MU _
dlne;”™ = —1 +T_9dlnTj.

We also have have dIn cé»” U+tdln cé-v/f U=_—dln T;. The effect of a productivity shock on production cost for
single unit firms in j is
dlnch = —dInTj.
Putting these results together, we have
dIng; = —Adln P; — (1 — A)dIn P;,
(1471 — (1 4+70)~%"
(1+ 7’—9)_% —14+(1+ 7'—9)_% —7l=m

>0 < n—1<0

+

dInTj

and

ding; = —(1— A)dIn P; — Adln Py

14+ 70"
- ki dinT;

1-n 1-7

(I+770)"7 =14+ A+770) 7 —rl=n

The difference between dIn Q_Sj and dlIn q_Sj/ reflects fact that for firms with a plant in j’, the productivity
of single plant status is not directly affected by dInT}, hence the increase in productivity in j makes MU
status in j/ unambiguously more attractive. For firms in ;7 the partial effect is ambiguous. If the elasticity
of substitution within plants is larger across plants, then a productivity improvement in j makes having a
second plant in j' relatively less valuable because in that case profits of MU firms are relatively less sensitive
to productivity in j.
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Proof. Log-linearizing around a symmetric equilibrium we get

g (G = (@D dn By + (ef0) 7 — (ref)! ) din Py
n¢j - (Cj‘WU)l n _ ( SU)l n +( MU)l—n _ (chU)l—’?

(') 1dIn eV — (V) 1dIn 5V
T @O O

(M) 1dIn e}V — (reFV) T 1dIn e§Y

+
(cé\/IU)l—n (SU)l nJr(C Uyi-n _ (r¢ 3~§U) -
eSU
In a symmetric equilibrium we can use —7 = ﬁ to define
< +7-
(CMU)l n __ (C.]S'U)l n
A =
(] ) (CJU)l n 4 C_‘;YIU)l n _ ( SU)l—’r]
B (1 —|—7'_9) -1
(1+779)" 5"—1+(1+r—9) e

as share of extra sales an SU firm realizes in j from switching to MU status (1 — A > % is the share realized
in j/ i.e. the SU firm in j would gain disproportionately in j' from switching to MU).
For the second part, we additionally use d In cM U=_ w;;dInT; where uj; is share of sales to j accounted

for by plant in j anddlnc] = —dInT} anddlncévw—&—dlnc] = —dInTj abwellabcMU—cJV,IU O

Price index. For a unit mass of potential entrants, and around a symmetric equilibrium, the log-linearized

price index is

Jo pa(@)'1dGy T [5T pi(9)'aGy [, pi(@)" Gy

dh’lpj = — P}*n P,lfn P,lin g dlnTj
J J J
Sp
pi(d)" o o

— " (dop; + Mdh s

CRIErEARE
]MU(d) )1 n

W(d% +dg;)
J

U(gj)tm

WW#TI dy)

J

The direct effect of a productivity change is proportional to the share of consumption produced in j
(coming from domestic SU firms, and MU firms from j and ;). The second, third and fourth row line
from net entry and net changes in MU status. Those effects are proportional to the market shares of these

“marginal” firms.
An equivalent expression for the price index in 5 is

p§Y (@)t

I RS S a— S|V VP P
le_"(l—n)(T pitdor)

dlnPj/ = —(1 - SD)dlnTj -
pMU (G}~

P71~ 1)

SU(g)1n

P71 —n)

(d¢:5j +do;)

+ (Tl_ndgz]' + dd:)j/)
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Adding these two together, we get

dln Py +din Py = —dn Ty - 90 v g yion(y 4 i)

P71 1)

(d(zj +d$]') SU /7 \1-n 1-n MU (7 \1-n

m {p (9;) "1 +77") = 2p " (¢5) }
Defining

L PEy T T - ) ] - @) T )
P;7(1 — )
and using B - _ _
dd; +dd; = dg; +dby = —dInT; — dIn Py — dln P,

we get

(dInP;+dInPy)(1+C)=—-dInT;(1+C)
which also implies - - _ _
do; +doj = dp; + dpj = 0.

Since the base level of these variables are the same in a symmetric equilibrium, this result obtains from the
result for log derivatives. With this result, we get the following simplification

dln P; = =SpdInT}
. ()"

dpi(1— 717"
P}~ 1) pmr
BT
o T

J

We can rewrite the log-linearized entry cutoffs

ding; = —w ¥dInT; — (2w°Y — 1)dIn P,

- (1707
L= (1 — , . A — _ .
dln ¢, (1-A)dInP; + A(dlnP; + dInTj) —— dInT;

(1+779) "7 —14(1+79) 7 —rl=n

dIng; = —(1 —2A)dIn P; — 5dIn T}

where 7 =

— L — > 0 Now we can plug those into the price index to get
(147-9)" "8 —1+(1+7-9)" "8 —71-1

dlnP] = —SDdthj

N I

PEy 1) (1—7"") [-wYdInT; — (20°Y — 1)dIn Pj]
J

()
¢ip3Y (05)' "

1-n
(n— l)Pj

(1 -7 [~(1—2A)dIn P; — 4d1In T}

o(¢)
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dIn Pj (14 a(9)(2w°Y — 1) + (@) (1 — 2A)) = —(Sp + (d)wY + a($)7)d InT;

>0

which gives the result dln P; = —AdInT; with A > Sp > 0 <= (a(¢)(2w’Y — 1) + a(¢)(1 — 2A))Sp <

(a(@)w3Y + a(¢)¥) which holds because wY > (2w%Y — 1) <= w9 <l and 5 >1— A > 1— 2A which
— 1—

i/}
holds under our maintained assumption of 1 4+ 7177 — (1 + 7_9) ¢ = O0>n—-1.

Log-linearized Equilibrium Characterized

Suppose A < 1 and # > n — 1. Then a negative productivity shock dInT}; < 0 raises prices in j and j’ with
dInPjy = —(1—-A)dInT; >0 and dInP; = —AdInT; >0

A negative productivity shock leads to exit of SU firms
ding; = wAdInT; + (1 — wY)(1 = A)dInT; — dInT; > 0

and a larger share of MU firms in j.

A+rin -1+ 7
1—n

(1—&-7*9)71%—1—1-(14-7*9)7 o —7l-nm

dIng; = AAT; + (1 — A)(1 — A)dInTj + dInT; <0

These entry responses are offset in j’.
Derivation Result 5

Labor demand analysis In a symmetric equilibrium, labor demand in j comes from domestic SU
firms as well as domestic and foreign MU firms. Write these as

L= (/: l(¢)de+/¢jl(¢)de+/¢j/l(¢)dG1’>

Letting asy be the share of labor demand in region j coming from single unit firms, we can log-linearize
this as

dinL; =(n—1)dInT;
N—————
Direct Effect
+(n—1) [0V (wspdIn P + (1 — wsp)dIn Pyr) + (1 — oY) (wapdIn P; + (1 — wasp)dIn Py

Product Market leakage>0
9(6)U(85) ;7
_ I (bj
J
|
Exit<0

g(quj) 1(6;)5Y dg;

+

Relocation<0

S

where a°V is the share of domestic labor demand coming from single unit firms and wy;py = H% is the

share of MU revenue stemming from sales to j. The last line uses d(zj = —dln g?)j/ and l((;zﬁj)MU =1(p;)MY.
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Similarly we log-linearize the labor demand for ;'

dinL} = (1— SN —wpp)(n —1—0)dInT;
Intrafirm Leakage Effect>0
+ (’I] - 1) [OzSU((l - wSU)dlnPj +wSUdlnPj/) + (1 - aSU)((l - wMU)dlnPj —‘y-wI\,{Udhle/]

Product Market leakage>0

9(6;)U(&;) -
,#d@,
N——

Entry>0

29 4G5 dg,
J

Relocation>0

Since employment in j’ goes up unambiguously, the DiD estimator |dInL; — dIn L;/| overstates the
equilibrium effect of regulation.
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D Appendix Figures

Figure A1: Within Firm leakage Effects: Discrete Exposure Variable

l 1

] ]
cAA INAA ; Amendment
Passed | Announced Passed

T T T T T
1962 1967 1972 1977 1982 1987
Year

—@— Plants —®— Employment

(A) Employment and Number of Plants

1
44 :
, Amendment
: Passed

1

: T T T T
1962 1967 1972 1977 1982 1987
Year

—@— Sales —®— Fuel Cost

(B) Sales and Cost of Fuels

55



Figure A2: Spatial leakage: Robustness
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Figure A3: Effects of Nonattainment across Manufacturing
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Figure A4: AFS Permit Data
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Figure A5: Wage Effects of Nonattainment
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E Borusyak and Hull (2023) Exposure Control

We construct counterfactual exposure measures at the firm- and county-level. We proceed as follows:

1. In the sample of monitored counties, estimate linear probability model

treat. = By + 1 log(pop). + B2 log(total emp). + €.

2. Obtain {;U/CB, €.} and let N, be the number of regulated counties

3. Counterfactual regulation: Compute score = x’cﬁ + € 2. and consider N, counties with largest score
as (pseudo)-regulated

4. Compute I E:}se“do and treat]f’ seudo hased on counterfactual regulation measure
5. Take average across 500 permutations of €,

6. Add as control variable to specifications (3)
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